Induction of defense response in tomato plants against Forl by garlic extract

Ileem Aguilar-Gastélum, Miguel Ángel Martínez-Téllez, Consuelo Corrales-Maldonado, Marisela Rivera-Domíguez, Irasema Vargas-Arispuro, Maritza Arellano-Gil

Abstract


A garlic extract (EA) was evaluated to induce the defense of tomato plants against Fusarium oxysporum radicis-lycopersici (Forl), by increasing the endogenous concentration of salicylic acid (AS) and jasmonic acid (AJ). Spraying 1 and 2 % of EA on plants intentionally infected with 1x107 spores.mL-1 of Forl reduced in 73.53% the severity of the disease produced by Forl with respect to the infected control. The height was similar (p ?0.05) in plants treated with EA and untreated. The accumulation of AS in plants spayed with 1 and 2 % of EA presented two significant increases (p?0.05), in the second and fifth weeks after spraying, with higher concentrations than the infected and non-infected controls in 11 and 6 times for the first and 2.7 times and 3.8 times for the second, respectively. The AJ was induced from the first week after the treatments, increasing 2.5 and 1.8 times more than the infected and non-infected controls, maintaining those values throughout the evaluation. The results show that the EA reduced the development of the disease caused by Forl to tomato plants mediated by an increase in the endogenous concentration of AS and AJ.


Keywords


SAR; severity; salicylic acid; jasmonic acid

Full Text:

PDF (Español)

References


Apodaca M, Zavaleta E, García R, Osada S y Valenzuela J. 2002. Frecuencia de campos infestados con Fusarium oxysporum f. sp. radicis-lycopersici en Sinaloa México y su control. Revista Mexicana de Fitopatología 20:1-7. Disponible en línea: http://www.redalyc.org/articulo.oa?id=61220101

Apodaca M, Zavaleta E, Osada S, García R y Valenzuela J. 2004. Hospedantes asintomáticos de Fusarium oxyspo¬rum Schlechtend. f. sp. radicis lycopersici W.R. Jarvis y Shoemaker en Sinaloa, México. Revista Mexicana de Fitopatología 22:7-13. Disponible en línea: http://www.redalyc.org/articulo. oa?id=61222102

Arbona V and Gómez-Cadenas A. 2008. Hormonal modulation of citrus responses to flooding. Journal of Plant Growth Regulation 27:241-250. DOI: 10.1007/s00344-008-9051-x

Arzoo K, Biswas S and Rajik M. 2012. Biochemical evidences of defence response in tomato against fusarium wilt induced by plant extracts. Plant Pathology Journal 11:42-50. DOI: 10.3923/ppj.2012.42.50

Baysal O, Laux P and Zeller W. 2002. Further studies on the induced resistance effect of plant extract from Redera helix against fire blight (Erwinia amylovora). Acta Horticulturae 590:273-277. DOI: 10.17660/ActaHortic.2002.590.40

Carrillo FJA, Montoya RTJ, García ERS, Cruz OJE, Márquez ZI y Sanduño BJ. 2003. Razas de Fusarium oxysporum f. sp. lycopersici Snyder y hansen, en tomate (Lycopersicon escuelentum Mill.) en El Valle de Culiacán, Sinaloa, México. Revista Mexicana de Fitopatología 21:123-127. Disponible en línea: http://www.redalyc.org/articulo.oa?id=61221205

Clavijo CSD. 2014. Búsqueda de resistencia a la pudrición causada por Fusarium spp. en Capsicum. Tesis de Maestría en Ciencias Agrarias. Universidad Nacional de Colombia. Palmira, Colombia, 75 pp. Disponible en línea: http://www.bdigital.unal.edu.co/47659/1/29673462_Sharon.pdf

Chohan S and Perveen R. 2015. Phytochemical analysis and antifungal efficacy of rhizome extracts of various plants against fusarium wilt and root rot of tomato. International Journal of Agriculture and Biology 17:1193-1199. DOI: 10.17857/IJAB/15.0055

El Oirdi M, El Rahma TA, Rigan L, El Hadram A, Rodrigue MC, Daay F, Vojno A and Bouarab K. 2011. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. The Plant Cell 23:2405-2421. https://doi.org/10.1105/tpc.111.083394

El-KallaL SM. 2007. Induction and modulation of resistance in tomato plant against fusarium wilt diseases by bioagent fungi (Arbuscular mycorrhiza) and/or hormonal elicitors (Jasmonic acid and Salicylic acid): 1-Changes in growth, some metabolic activities and endogenous hormones related to defense mechanism. Australian Journal of Basic Applied Science 1:691-705. Disponible en línea: https://pdfs.semanticscholar.org/42bb/00a3ee771688eba8485814214110d11cb703.pdf

Fatema S and Ahmad MU. 2005. Comparative efficacy of some organic amendments and a nematicide (Furadan-3G) against root-knot on two local varieties of groundnut. Plant Pathology Journal 4:54-57. DOI: 10.3923/ppj.2005.54.57

Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review Phytopatholy 43:205-227. DOI: 10.1146/annurev.phyto.43.040204.135923

Gozzo F and Faoro F. 2013. Systemic acquired resistance (50 years after discovery): moving from the lab to the field. Journal of Agricultural and Food Chemistry 61:12473-12491. DOI: 10.1021/jf404156x.

Guzmán TE, Montenegro DD and Benavides MA. 2014. Concentration of salicylic acid in tomato leaves after foliar aspersions of this compound. American Journal of Plant Sciences 5:2048-2056. DOI: 10.4236/ajps.2014.513220

Hadian S, Rahnama K, Jamali S and Eskandari A. 2011. Com¬paring Neem extract with chemical control on Fusarium oxysporum and Meloidogyne incognita complex of toma¬to. Advances in Environmental Biology 5:2052-2057. Disponible en línea: http://www.aensiweb.com/old/aeb/2011/2052-2057.pdf

Hayat Q, Hayat S, Alyemeni MN and Ahmad A. 2012. Salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense system in Cicer arietinum L. Plant Soil Environmental 58:417-423. DOI: 10.17221/232/2012-PSE

Hayat Q, Hayat S, Irfan M, Ahmad A. 2010. Effect of exog¬enous salicylic acid under changing environment: A review. Environmental and Experimental Botany 68:14-25. https://doi.org/10.1016/j.envexpbot.2009.08.005

Heil M and Bostock RM. 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Annals of botany 89:503-512. DOI: 10.1093/aob/mcf076

Hiderman J, Makino A, Kurita Y, Mae T and Ojima K. 1992. Changes in the levels of chlorophyll and light-harvesting chlorophyll a/b protein of PS II in rice leaves aged under different irradiances from full expansion through senescence. Plant and cell physiology 33:1209-1214. https://doi.org/10.1093/oxfordjournals.pcp.a078375

Jansen H, Müller B and Knobloch K. 1987. Allicin characterization and its determination by HPLC. Planta Médica 53:559-562. DOI: 10.1055/s-2006-962811

Kachroo A and Robin GP. 2013. Systemic signaling during plant defense. Current Opinion in Plant Biology 16:527-533. DOI: 10.1016/j.pbi.2013.06.019

Kravchuk Z, Vicedo B, Flors V, Camanes G, González BC, García AP. 2011. Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea. Journal of Plant Physiology 168:359-366. DOI: 10.1016/j.jplph.2010.07.028

Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J. 2008. Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied bygas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiology and Biochemistry 46:189-195. https://doi.org/10.1016/j.plaphy.2007.10.006

McGovern RJ. 2015. Management of tomato disease caused by Fusarium oxysporum. Crop Protection 73:78-92. http://doi.org/10.1016/j.cropro.2015.02.021

Mendoza M, González GA, Santelises AA, Etcheveres JD y Rincón JA. 1998. Estimación de la concentración de nitrógeno y clorofila en tomate mediante un medidor portátil de clorofila. Terra 16:135-141. Disponible en línea: https://www.chapingo.mx/terra/contenido/16/2/art135-141.pdf

Mur L, Kenton P, Atzorn R, Miersch O and Wasternack C. 2006. The Outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiology 140:249-262. https://doi.org/10.1104/pp.105.072348

Nurzyeki J. 2013. Effect of substrates on nutrient content in root zone and leaves of greenhouse tomato. Acta Scientiarum Polonorum. Hortorum Cultus 12:169-178. Disponible en línea: http://www.acta.media.pl/pl/full/7/2013/000070201300012000050016900178.pdf

Ojha S and Chatterjee NCh. 2012. Induction of resistance in Tomato plants against Fusarium oxysporum f. sp. licopersici mediated through salicylic acid and Trichoderma harzianum. Journal of Plant Protection Research 52:220-225. https://doi.org/10.2478/v10045-012-0034-3

Peñuelas RO, Arellano GM, Verdugo FA, Chaparro ELA, Hernández RSE, Martínez CJL y Vargas AIC. 2017. Larrea tridentata extracts as an ecological strategy against Fu-sarium oxysporum radicis-lycopersici in tomato plants under greenhouse conditions. Revista Mexicana de Fito¬patología 35:360-376. DOI: 10.18781/R.MEX.FIT.1703-3

Pieterse CM, Van der Does D, Zamioudis C, Leon RA, Van Wees SCM. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Development Biology 28:489-521. DOI: 10.1146/annurev-cellbio-092910-154055

Rahman TA, Oirdi ME, Gonzalez LR, Bouarab K. 2012. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato. Molecular Plant Microbe Interaction 25:1584-93. DOI: 10.1094/MPMI-07-12-0187-R

Rivas SVM and Plasencia J. 2011. Salicylic acid beyond defence: its role in plant growth and development. Journal of experimental Botany 62:3321-3338. DOI: 10.1093/jxb/err031

Ryan CA. 2000. The systemin signaling pathway: differential activation of plant defensive genes. Biochimica et Biophysica Acta 1477:112-121. https://doi.org/10.1016/S0167-4838(99)00269-1

Ryan CA and Moura DS. 2002. Systemic wound signaling in plants: A new perception. Proceeding of the National Academy of Science. 99:6519-6520. https://doi.org/10.1073/pnas.112196499

Shah J and Zeier J. 2013. Long-distance communication and signal amplification in systemic acquired resistance. Frontiers in Plant Science 4:30. DOI: 10.3389/fpls.2013.00030

Swarupa V, Ravishankar K and Rekha A. 2014. Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta 239:735-751. DOI: 10.1007/s00425-013-2024-8

Szczechura W, Staniaszek M and Habdas H. 2013. Fusarium oxysporum f. sp. radicis-lycopersici-the cause of Fusarium crown and root rot in tomato cultivation. Journal of Plant Protection Research 53:172-176. DOI: 10.2478/jppr- 2013-0026

Towsend GR and Heuberger JW. 1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Reporter 27:340-343. Disponible en línea: https://eurekamag.com/research/025/008/025008582.php

Van Loon L, Rep M and Pieterse CM. 2006. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology 44:135-62. DOI: 10.1146/annurev.phyto.44.070505.143425

Vázquez M, Jiménez S, Torres I, Anaya I, Mendoza H y Guevara R. 2012. Comportamiento de plantas de tomate (Solanum lycopersicum) asperjadas con ácido salicílico cultivadas bajo diferentes condiciones climáticas en in¬vernadero. Ciencia@UAQ, 5:1-9. Disponible en línea: http://www.uaq.mx/investigacion/revista_ciencia@uaq/ArchivosPDF/v5-n1/articulo6.pdf.

Zaker M and Mosallanejad H. 2010. Antifungal activity of some plant extracts on Alternaria alternata, the causal agent of alternaria leaf spot of potato. Pakistan Journal of. Biological Science 13:1023-1029. DOI: 10.3923/pjbs.2010.1023.1029




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1806-2

Refbacks

  • There are currently no refbacks.