Reductive disinfestation, soil desiccation and Trichoderma harzianum to control Phymatotrichopsis omnivora in pecan tree nursery

José Alfredo Samaniego-Gaxiola, Aurelio Pedroza-Sandoval, Yasmín Chew-Madinaveitia, Arturo Gaytán-Mascorro

Abstract


In the laboratory, flooded soil with glucose, 0.5-4.0 mg g-1, the pH and potential oxidation-reduction (ORP) reached values of 6.2 and -250 mV, also, we observed up to 22 mmol L-1 of volatile fatty acids (VAFs). The supernatant of the soil was adjusted or not to pH ~ 4, then sclerotia of P. omnivora were submerged in it. The sclerotia died only in supernatants at pH ~ 4 that came from soil with 2.0 and 4.0 mg g-1 of glucose added. In the field, there were six treatments: a control or untreated soil (C); 55 t ha-1 of molasses was added and the ground was covered with plastic (M); inoculated soil with Trichoderma harzianum (T); dried soil (DS) and their combinations DS+M, DS+T and DS+M+ T. Where molasses was added, the pH and ORP reached 6.5 and -200 mV. The pH and ORP reached in soils with glucose and molasses are characteristic of soil reductive disinfestation (RSD). In the field, treatments were applied to the soil, with four plots per treatment and 12 pecan tree seeds were planted per plot. After three years, there was no difference in incidence and mortality of trees caused by P. omnivora, but the roots were invaded by Trichoderma sp.

Keywords


soil reductive disinfestation; antagonism; biocontrol

Full Text:

PDF (Español)

References


Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (Sistema de Centros Públicos de Investigación CONACYT). 2018. La nuez pecanera en México. Disponible en línea: https://centrosconacyt.mx/ objeto/nuez-pecanera/

Conn KL, Tenuta M and Lazarovits G. 2005. Liquid swine manure can kill Verticillium dahliae microsclerotia in soil by volatile fatty acid, nitrous acid, and ammonia toxicity. Phytopathology 95(1):28-35. http://dx.doi.org/10.1094/ PHYTO-95-0028

Herrera-Pérez T y Samaniego-Gaxiola JA. 2002. Enfermedades del nogal. Pp. 177-206. En: Arreola, AA y Reyes JI (eds). Tecnología de Producción del Nogal Pecanero. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental La Laguna. Matamoros, Coahuila, México. 220 p. http://biblioteca.inifap. gob.mx:8080/jspui/bitstream/handle/123456789/1967/ Tecnologia%20de%20produccion%20de%20nogal%20 pecanero.pdf?sequence=1

Hewavitharana SS, and Mazzola M. 2016. Carbon source-dependent effects of anaerobic soil disinfestation on soil microbiome and suppression of Rhizoctonia solani AG-5 and Pratylenchus penetrans. Phytopathology 106(9):10151028. http://dx.doi.org/10.1094/PHYTO-12-15-0329-R

Hewavitharana SS, Ruddell D, and Mazzola M. 2014. Carbon source-dependent antifungal and nematicidal volatiles derived during anaerobic soil disinfestation. European Journal of Plant Pathology 140(1):39-52. http://dx.doi. org/10.1007/s10658-014-0442-5

Huang X, Liu L, Wen T, Zhu R, Zhang J and Cai Z. 2015. Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f. sp. cubense infected soil during and after reductive soil disinfestation. Microbiological research 181:33-42. https://doi. org/10.1016/j.micres.2015.08.004

Huang X, Liu L, Wen T, Zhang J, Wang F and Cai Z. 2016. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. Applied microbiology and biotechnology 100(12):55815593. DOI 10.1007/s00253-016-7362-6

Katase M, Kubo C, Ushio S, Ootsuka E, Takeuchi T and Mizukubo T. 2009. Nematicidal activity of volatile fatty acids generated from wheat bran in reductive soil disinfestation. Nematological Research 39(2):53-62. https://swfrec.ifas. ufl.edu/docs/pdf/veg-hort/asd/Nematicidal_activity_volatile_fatty_acids_SD.pdf

Lazarovits G, Conn KL, Abbasi PA and Tenuta M. 2005. Understanding the mode of action of organic soil amendments provides the way for improved management of soilborne plant pathogens. Acta Horticulturae 698:215. https://doi. org/10.17660/ActaHortic.2005.698.29

Lewis JA and Papavizas GC. 1984. A new approach to stimulate population proliferation of Trichoderma species and other potential biocontrol fungi introduced into natural soils. Phytopathology 74(10):1240-1243. https:// www.apsnet.org/publications/phytopathology/backissues/ Documents/1984Articles/Phyto74n10_1240.pdf

Liu L, Chen S, Zhao J, Zhou X, Wang B, Li Y, Zheng G, Zhang J, Cai Z and Huang X. 2018. Watermelon planting is capable to restructure the soil microbiome that regulated by reductive soil disinfestation. Applied Soil Ecology 129:52-60. https://www.researchgate.net/profile/ Jun_Zhao33/publication/325028296_Watermelon_planting_is_capable_to_restructure_the_soil_microbiome_that_regulated_by_reductive_soil_disinfestation/ links/5b2c7922a6fdcc8506bc861e/Watermelon-plantingis-capable-to-restructure-the-soil-microbiome-that-regulated-by-reductive-soil-disinfestation.pdf

Liu L, Kong J, Cu, H, Zhang J, Wang F, Cai Z and Huang X. 2016. Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation. Biological Control 101:103-113. http://dx.doi.org/10.1016/j.biocontrol.2016.06.011

Momma, N. 2008. Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Japan Agricultural Research Quarterly 42(1):7-12. https://www. jstage.jst.go.jp/article/jarq/42/1/42_7/_pdf

Momma N, Kobara Y and Momma M. 2011. Fe2+ and Mn2+, potential agents to induce suppression of Fusarium oxysporum for biological soil disinfestation. Journal of General Plant Pathology 77(6):331-335. http://dx.doi.org/10.1007/ s10327-011-0336-8

Momma N, Yamamoto K, Simandi P and Shishido M. 2006. Role of organic acids in the mechanisms of biological soil disinfestation (BSD). Journal of General Plant Pathology 72(4):247-252. http://dx.doi.org/10.1007/s10327-0060274-z

Samaniego-Gaxiola JA. 1994. Viabilidad de los esclerocios de Phymatotrichum omnivorum (Shear) Dugg. en suelos inundados y complementados con glucosa. Revista Mexicana de Fitopatología 12(1):125-133.

Samaniego-Gaxiola, JA. 2008. Efecto del pH en la sobrevivencia de esclerocios de Phymatotrichopsis omnivora Dugg Hennebert II expuestos a Tilt y Trichoderma sp. Revista Mexicana de Fitopatología 26(1):32-39. http://www.redalyc.org/html/612/61226106/

Samaniego GJA. 2013. Supervivencia de los esclerocios de Phymatotrichopsis omnivora en función del pH in vitro. Revista Mexicana de Ciencias Agrícolas 4(3):337351. http://www.redalyc.org/service/redalyc/downloadPdf/2631/263127575001/1

Samaniego-Gaxiola, JA and Balagurusamy N. 2013. Survival of soil-borne fungus Phymatotrichopsis omnivora after exposure to volatile fatty acids. Journal of General Plant Pathology 79(2):105-109. https://link.springer.com/article/10.1007/s10327-013-0436-8

Samaniego-Gaxiola JA y Chew-Madinaveitia Y. 2007. Diversidad de géneros de hongos del suelo en tres campos con diferente condición agrícola en La Laguna, México. Revista Mexicana de Biodiversidad 78(2):383-390. http:// revista.ib.unam.mx/index.php/bio/article/view/407/377

Samaniego-Gaxiola JA, Fontes-Puebla AA, Tarango-Rivero SH y Pedroza-Sandoval A. 2014. Comportamiento de la Pudrición Texana (Phymatotrichopsis omnivora) en Vivero de Nogales. Revista mexicana de fitopatología 32(1):2637. http://rmf.smf.org.mx/Vol3212014/Articulos/ComportamientodelaPudricionTexana.pdf

Samaniego GJA, Ordóñez MHJ, Pedroza SA y Cueto-Wong C. 2010. Relationship between the drying of the sclerotia of Phymatotrichopsis omnivora and its survival. Revista Mexicana de Micología 32(1):49-58. http://www.redalyc. org/pdf/883/88319899006.pdf

Samaniego-Gaxiola JA y Pedroza-Sandoval A. 2013. Usos potenciales de los ácidos grasos volátiles en suelo, agua y aire. Terra Latinoamericana 31(2):155-163. http:// www.scielo.org.mx/scielo.php?script=sci_arttext&pid =S0187-57792013000300155

Serrano-Pérez P, Rosskopf E, De Santiago A and RodríguezMolina MC. 2017. Anaerobic soil disinfestation reduces survival and infectivity of Phytophthora nicotianae chlamydospores in pepper. Scientia horticulturae 215:38-48. http://dx.doi.org/10.1016/j.scienta.2016.12.003

Shennan C, Muramoto J, Lamers J, Mazzola M, Rosskopf EN, Kokalis-Burelle N, Momma N, Butler DM and Kobara Y. 2014. Anaerobic soil disinfestation for soil borne disease control in strawberry and vegetable systems: current knowledge and future directions. In VIII International Symposium on Chemical and Non-Chemical Soil and Substrate Disinfestation 1044:165-175. https://doi. org/10.17660/ActaHortic.2014.1044.20

Shrestha U, Ownley BH, Rosskopf EN, Dee ME and Butler DM. 2013. Optimization of amendment C: N ratio in anaerobic soil disinfestation for control of Sclerotium rolfsii. In Proceedings of Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions, SanDiego, CA. 14-1. https:// www.researchgate.net/profile/Utsala_Shrestha/publication/309479087_OPTIMIZATION_OF_AMENDMENT_ CN_RATIO_IN_ANAEROBIC_SOIL_DISINFESTATION_FOR_CONTROL_OF_SCLEROTIUM_ROLFSII/ links/581248b108ae1f5510c2a2cd/OPTIMIZATION-OFAMENDMENT-CN-RATIO-IN-ANAEROBIC-SOIL-DISINFESTATION-FOR-CONTROL-OF-SCLEROTIUMROLFSII.pdf

Shrestha U, Augé RM and Butler DM. 2016. A meta-analysis of the impact of anaerobic soil disinfestation on pest suppression and yield of horticultural crops. Frontiers in Plant Science 7 article 1254:1-20. http://dx.doi.org/10.3389/ fpls.2016.01254

Statistical Analysis System (SAS Institute). 1999. SAS.

Tenuta M, Conn KL and Lazarovits G. 2002. Volatile fatty acids in liquid swine manure can kill microsclerotia of Verticillium dahliae. Phytopathology 92(5):548552. https://apsjournals.apsnet.org/doi/pdf/10.1094/ PHYTO.2002.92.5.548

Tenuta M and Lazarovits G. 2002. Ammonia and nitrous acid from nitrogenous amendments kill the microsclerotia of Verticillium dahliae. Phytopathology 92(3):255264. https://apsjournals.apsnet.org/doi/pdfplus/10.1094/ PHYTO.2002.92.3.255




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1808-7

Refbacks

  • There are currently no refbacks.