Botrytis cinerea causing gray mold in blackberry fruit in Mexico

José Terrones-Salgado, Daniel Nieto-Angel, Cristian Nava-Díaz, Daniel Téliz-Ortiz, Rómulo García-Velasco, Moisés Roberto Vallejo-Pérez, Prometeo Sánchez-García

Abstract


Blackberry (Rubus sp.) is a fruit attacked by the fungus genera Botrytis. In Mexico, it is unknown which species are associated with the gray mold symptoms. This research aimed to identify the Botrytis species associated with blackberry. In November-December of 2016, sampling was carried out in 17 blackberry production regions in Mexico. Fruits with gray mold symptoms were collected, from which fungi were isolated and purified. Two hundred and eleven isolates were obtained using the monosporic method. Isolates clustered in 21 groups based on a multivariate analysis using morphometric, pathogenic and cultural data. For each group, one isolate was selected for molecular characterization. DNA was extracted using AP method, subsequently; polymerase chain reactions of internal transcribed spacer (ITS) were performed using the ITS1 and ITS4 primers. The PCR products were sequenced in both directions with the Sanger method.  Based on morphometric, pathogenic and cultural data, and the analysis of ITS sequences, we conclude that the isolates corresponding to Botrytis cinerea.

Keywords


PCR; sequences analysis; pathogenicity; characterization

Full Text:

PDF (Español)

References


Aktaruzzaman MD, Xu SJ, Kim JY and Kim BS. 2014. First Report of Postharvest Gray Mold Rot on Carrot Caused by Botrytis cinerea in Korea. Research in gray Plant Disease 20(2):129-131. http://dx.doi.org/10.5423/ RPD.2014.20.2.129

Aktaruzzaman MD, Afroz T, Lee YG and Kim BS. 2017. Botrytis cinerea is the causal agent of post-harvest grey mould rot on green bean (Phaseolus vulgaris) in Korea. Australasian Plant Disease Notes 12: 32. DOI: 10.1007/ s13314-017-0261-6

Calvo GC, Viñas I. Elmer PAG, Usall J and Teixidó N. 2014. Suppression of Botrytis cinerea on necrotic grapevine tissues by early season applications of natural products and biocontrol agents. Pest Management Science 70(4): 595– 602. https://doi.org/10.1002/ps.3587

Carisse O, Tremblay DM and Lefebvre A. 2014. Comparison of Botrytis cinerea airborne inoculum progress curves from raspberry, strawberry and grape plantings. Plant Pathology 63:983–993. https://doi.org/10.1111/ppa.12192

Cheon W and Jeon YH. 2013. First Report of Gray Mold Caused by Botrytis cinerea on Greenhouse-Grown Zucchini in Korea. Plant Disease 97(8):1116. doi: 10.1094/PDIS-0113-0005-PDN.

Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, Simon A and Viaud M. 2007. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters 277: 1–10. https://doi. org/10.1111/j.1574-6968.2007.00930.x

Crisosto CH, Garner D and Crisosto G. 2002. Carbon dioxideenriched atmospheres during cold storage limit losses from Botrytis but accelerate rachis browning of ‘Redglobe’ table grapes. Postharvest Biology and Technology 26: 181–189. https://doi.org/10.1016/S0925-5214(02)00013-3

DNASTAR. 2001. Lasergene expert sequence analysis software, User manual. Version 5. Wisconsin, USA: DNASTAR Inc. Madison.

Doss RP, Deisenhofer J, Krug von Nidda HA, Soeldner AH and McGuire RP. 2003. Melanin in the extracellular matrix of germlings of Botrytis cinerea. Phytochemistry 63: 687–691. https://doi.org/10.1016/S0031-9422(03)00323-6

Droby S, Wisniewski M, Macarisin D and Wilson C. 2009. Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biology and Technology 52: 137–145. https://doi.org/10.1016/j.postharvbio.2008.11.009

Elad Y, et al. 2014. Lists of plant pathogens and plant diseases in Israel. http://www.phytopathology. org.il/pws/ page!10949.

Elmagid ABD, Garrido P. A, Hunger R, Lyles JL, Mansfield MA, Gugino BK, Smith DL, Melouk HA and Garzon CD. 2013. Discriminatory simplex and multiplex PCR for four species of the genus Sclerotinia. Journal of Microbiological Methods 92(3): 293-300. https://doi.org/10.1016/j. mimet.2012.12.020

Erper I, Celik H, Turkkan M and Kilicoglu MC. 2015. First report of Botrytis cinerea on golden berry. Australasian Plant Disease Notes 10(1): 24-25. http://doi.org/10.1007/ s13314-015-0175-0

Ellis MB. 1971. Dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey, England, 608 p.

Farr DF and Rossman YA. 2011. Fungal databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved 19 May 2011, from /fungaldatabases/

Feliziani E and Romanazzi G. 2013. Preharvest application of synthetic fungicides and alternative treatments to control postharvest decay of fruit. Stewart Postharvest Review 9(3): 1-6. DOI: 10.2212/spr.2013.3.4

Gardes M and Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Molecular Ecology 2(2): 113–118. https://doi.org/10.1111/j.1365-294X.1993. tb00005.x

Holubová JV. 1974. A revision of the genus Olpitrichum Atk. Folia Geobotanica et Phytotaxonomica 9(4): 425–432.

Ippolito A and Nigro F. 2000. Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection 19(8-10): 715–723. https://doi.org/10.1016/S0261-2194(00)00095-8

Jarvis WR. 1977. Botryotinia and Botrytis species; taxonomy, physiology and pathogenicity. Monograph No. 15. Ottawa: Canadian Department of Agriculture. Otawwa. 195 p.

Li X, Kerrigan J, Chai W and Schnabel G. 2012a. Botrytis caroliniana, a new species isolated from blackberry in South Carolina. Mycologia 104(3): 650–658. https://doi. org/10.3852/11-218

Li X, Fernández OD, Chai W, Wang F and Schnabel G. 2012b. Identification and prevalence of Botrytis spp. from blackberry and strawberry fields of the Carolinas. Plant Disease 96(11): 1634–1637. https://doi.org/10.1094/PDIS-02-120128-RE

Lorenzini M and Zapparoli G. 2014. An isolate morphologically and phylogenetically distinct from Botrytis cinerea obtained from withered grapes possibly represents a new species of Botrytis. Plant Pathology 63(6): 1326-1335. https://doi.org/10.1111/ppa.12216

Martinez F, Blancard D, Lecomte P and Levis C. 2003. Phenotypic differences between vacuma and transposa subpopulations of Botrytis cinerea. European Journal of Plant Pathology 109(5): 479-488. https://doi. org/10.1023/A:1024222206991

Nieto LEH, Aguilar PLA, Ayala EV, Nieto AD, Nieto AR, Leyva MSG and Tovar PJM. 2014. FIRST REPORT OF Botrytis cinerea CAUSING POSTHARVEST GRAY MOLD OF TEJOCOTE (Crataegus mexicana) FRUIT IN MEXICO. Journal of Plant Pathology 96(4)124.

Ozer G and Bayraktar H. 2014. First report of Botrytis cinerea on cornelian cherry. Australasian Plant Disease Notes 9: 126. https://doi.org/10.1007/s13314-014-0126-1

Ponce de León I, Oliver JP, Castro A, Gaggero C, Betancor M and Vidal S. 2007. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens. BMC Plant Biology 7: 52. https://doi. org/10.1186/1471-2229-7-52

Ruiz R, Hernández MJ, Ayala EV, Soto RL, Leyva MSG and Hernández RJ. 2014. Hongos asociados a cálices de Jamaica (Hibiscus sabdarifa L.) deshidratados y almacenados en Guerrero, México. Revista Mexicana de fitopatología. 33 (1): 12-30. http://www.redalyc.org/articulo. oa?id=61240687002.

Rupp S, Plesken C, Rumsey S, Dowling M, Schnabel G, Weber RWS and Hahn M. 2017. Botrytis fragariae, a new species causing gray mold on strawberries, shows high frequencies of specific and efflux-based fungicide resistance. Applied and Enviromental Microbiology 83(9): 00269-17. https://doi.org/10.1128/AEM.00269-17

SAGARPA, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Servicio de información agroalimentaria y pesquera. 2018. https://www.gob.mx/ siap/acciones-y-programas/produccion-agricola-33119. (Consulta, mayo de 2018).

Saito S, Margosan D, Michailides TJ and Xiao CL. 2016. Botrytis californica, a new cryptic species in the B. cinerea species complex causing gray mold in blueberries and table grapes. Mycologia 108(2): 330–343. https://doi. org/10.3852/15-165

Sambrook J and Russel DW. 2001. Rapid isolation of yeast DNA. In:Sambrook J, Russell DW (eds) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York, pp 631–632.

SAS Versión .9.1 for Windows

Sequencher. 2014. Sequence analysis software Version 5.3. Ann Arbor, MI, USA: Gene Codes Corporation.

Schindelin J, Rueden CT, Hiner MC and Eliceiri KW. 2015. The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development 82(7-8): 518-529. https://doi.org/10.1002/mrd.22489

Silva MA, Correa FR, Pinho DB, Pereira OL and Furtado GQ. 2016. First report of Botrytis cinerea on Miconia cinnamomifolia 11:26. Australasian Plant Disease Notes. DOI 10.1007/s13314-016-0215-4

Smith MI, Dunez J, Phillips DH, Lelliott AR and Archer AS. 2009. European handbook of plant diseases. Wiley online library, UK. Blackwell, Oxford, p 583. doi: 10.1002/9781444314199

Staats M, Baarlen PV, and Van KJAL. 2005. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Molecular Biology and Evolution 22(2): 333–346. https://doi.org/10.1093/molbev/msi020

Steel RGD, Torrie JH and Dickey DA. 1997. Principles and procedures of statistics a biometrical approach. 3th Edition. McGraw-Hill. USA. 139-201; 286-290.

Tamura K, Stecher G, Peterson D, Filipski A and Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30(12): 2725–2729. https://doi.org/10.1093/molbev/mst197

Tanovic B, Delibasic G, Milivojevic J and Nikolic M. 2009. Characterization of Botrytis cinerea isolates from small fruits and grapevine in Serbia. Archives of Biological Sciences 61(3):419–429. DOI: 10.2298/ABS0903419T

Tanovic B, Hrustic J, Mihajlovic M, Grahovac M and Delibasic G. 2014. Botrytis cinerea in raspberry in Serbia I: Morphological and molecular characterization. Journal Pesticides and Phytomedicine 29(4): 237-247. DOI: 10.2298/ PIF1404237T

Teles CS, Benedetti BC, Gubler WD and Crisosto CH. 2014. Prestorage application of high carbon dioxide combined with controlled atmosphere storage as a dual approach to control Botrytis cinerea in organic ‘Flame Seedless’ and ‘Crimson Seedless’ table grapes. Postharvest Biology and Technology 89: 32–39. https://doi.org/10.1016/j.postharvbio.2013.11.001

White TJ, Bruns T, Lee S and Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to methods and applications (Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., eds), Academic Press, San Diego: 315–322.

Xie XW, Zhang ZX, Chai AL, Shi YX and Li BJ. 2016. Grey mould on leaf mustard caused by Botrytis cinerea, a new disease in China. Australasian Plant Disease Notes 11: 23. http://doi.org/10.1007/s13314-016-0211-8

Yu L, Zhao R, Xu SG, Su Y, Gao D and Srzednicki. 2014. First Report of Gray Mold on Amorphophallus muelleri Caused by Botrytis cinerea in China. Plant Disease 98(5):692-692. https://doi.org/10.1094/PDIS-08-13-0855-PDN

Zhang J, Wu MD, Li GQ, Yang L, Yu L, Jiang DH, Huang HC and Zhuang WY. 2010a. Botrytis fabiopsis, a new species causing chocolate spot of broad bean in central China. Mycologia 102(5): 1114–11267. https://doi.org/10.3852/09217

Zhang J, Zhang L, Li GQ, Yang L, Jiang DH, Zhuang WY and Huang HC. 2010b. Botrytis sinoallii: a new species of the grey mould pathogen on Allium crops in China. Mycoscience 51(6): 421–431. https://doi.org/10.1007/S10267010-0057-4

Zhang M, Wang XJ, Wu HY and Sun B. 2014. First Report of Botrytis cinerea Causing Fruit Rot of Pyrus sinkiangensis in China. Plant Disease 98(2):281-281. DOI: 10.1094/ PDIS-06-13-0639-PDN

Zhang J, Yang H, Yu QY, Wu MD, Yang L, Zhuang WY, Chen WD and Li GQ. 2016. Botrytis pyriformis sp. nov., a novel and likely saprophytic species of Botrytis. Mycologia 108(4): 682-696. https://doi.org/10.3852/15-340

Zhou YJ, Zhang J, Wang XD, Yang L, Jiang DH, Li GQ, Hsiang T and Zhuang WY. 2014. Morphological and phylogenetic identification of Botrytis sinoviticola, a novel cryptic species causing gray mold disease of table grapes (Vitis vinifera) in China. Mycologia 106(1): 43–56. https:// doi.org/10.3852/13-032




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1906-1

Refbacks

  • There are currently no refbacks.