Isolation, identification and characterization of antagonistic rhizobacteria to Sclerotium cepivorum

Martha Delia Ocegueda-Reyes, Josefina Casas-Solís, Gil Virgen-Calleros, Diego Raymundo González-Eguiarte, Eduardo López-Alcocer, Victor Olalde-Portugal

Abstract


White rot caused by the fungus Sclerotium cepivorum causes great economic losses in the genus Allium nationwide. In this work, three rhizobacteria with antagonistic effect on this fungus were isolated, identified and characterized. 656 bacteria were isolated in soil samples from the rhizosphere of onion plants (Allium cepa). And in vitro antagonism to S. cepivorum was also evaluated. 23 of these isolates showed antagonistic activity with inhibition halos greater than 5 mm; three of these were greater than 20 mm; these were selected and identified as Gram positive bacilli, belonging to the genus Bacillus, B. amyloliquefaciens and B. subtilis. These rhizobacteria showed enzymatic activity of 1-aminocyclopropane 1-carboxylate deaminase, production of indolacetic acid and siderophores, as well as NaCl tolerance (up to 7.5%). Temperatures of 24 and 37 °C and humidity (50, 75 and 100%) did not affect bacterial development. Of the cellfree extracts obtained in different growth phases, the highest antifungal activity on S. cepivorum was obtained with the stationary phase extracts (16 to 24 h of incubation). Due to the attributes of these rhizobacteria they could be considered as an alternative for the control of S. cepivorum in onion.

Keywords


White rot; Bacillus; siderophores; indolacetic acid; ACC; surviva

Full Text:

PDF

References


Aguado-Santacruz GA, Moreno-Gómez B, Jiménez-Francisco B, García-Moya E y Preciado-Ortiz RE. 2012. Impacto de los sideróforos microbianos y fitosideróforos en la asimilación de hierro por las plantas: una síntesis. Revista de Fitotecnia Mexicana 35 (1):9-2. http://www.redalyc.org/ articulo.oa?id=61023295002

Ahemad M and Kibret M. 2013. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud Universityz–Science 26:1-20. Doi:10.1016/j.jksus.2013.05.001

Ariza Y y Sánchez L. 2012. Determinación de metabolitos secundarios a partir de Bacillus subtilis con efecto biocontrolador sobre Fusarium sp. Nova 10(18): 1794-2470. www. scielo.org.co/pdf/nova/v10n18/v10n18a01.pdf

Arribalzaga EB. 2007. Interpretación de las curvas de supervivencia. Revista Chilena de Cirugía 59(1):75-83. Doi:10.4067/S0718-40262007000100013

Calvo P y Zuñiga D. 2010. Caracterización fisiológica de cepas de Bacillus spp. aisladas de la rizosfera de papa (Solanum tuberosum). Ecología Aplicada 9(1): 31-39. www.scielo.org.pe/scielo.php?script=sci_arttext&pid =S1726-22162010000100004

Castillo H, Rojas RR y Villalta M. 2016. Actividad antagonista de Gliocladium sp. contra Sclerotium cepivorum. Tecnología en Marcha 57-54. Doi:10.18845 / tm.v29i7.2706

Bernal RM y Guzman UM. 1984. Antibriograma de discos. Normalización de la técnica de Kirby Bauer. Biomedica 4(3-4). https://doi.org/10.7705/biomedica.v4i3-4.1891

Da Silva SR, Moutinho LB, Dos Santos RD, VasconcelosRodrigues IS, Talamini V, Fernandes FM and Fernades MRP. 2018. Using antagonistic soil bacteria and their cellfree filtrates to control the black rot pathogen Xanthomonas campestris pv. campestris. Journal of Phytopathology 166:494-501. Doi:10.1111/jph.12709

Datta M, Palit R, Sengupta C, Pandit MK and Banerjee S. 2011. Plant growth promoting rhizobacteria enhance growth and yield of chilli (Capsicum annuum L.) under field conditions. Australia. Journal of Crop Science 5(5):531-536. www.cropj.com/banerjee_5_5_2011_531_536.pdf

Elshahawy IE, Saied NM, Abd-El-Kareem F and Morsy AA. 2017. Field application of Sclerotial micoparasites as biocontrol agents to Stromatinia cepivora, the cause of onion White rot. Journal of Plant Pathology 99(2):391-401. Doi:10.4454/jpp.v99i2.3888

Esquivel-Cote R, Gavilanes-Ruiz M, Cruz-Ortega R y Huante P. 2013. Importancia agrobiotecnológica de la enzima ACC desaminasa en rizobacterias. Una revisión. Universidad Autónoma de México. Revista de Fitotecnia Mexicana 36(3):251-258. www.scielo.org.mx/pdf/rfm/v36n3/ v36n3a10.pdf

FRAC-Fungicide resistace action committee. 2018. Code List©. pp.1-14. www.phi-base.org/images/fracCodeList.pdf (consulta, noviembre 2018).

Glick RB. 2012. Plant growth promoting bacteria: Mechanisms and applications. Hindawi publishing corporation, Scientifica ID-963401 p.15. Doi:10.6064/2012/963401

Glick RB. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research 169:30-39. Doi:10.1016/j.micres.2013.09.009

Glickmann E and Dessaux Y. 1995. A critical examination of the specificity of the Salkowski reagent for synodic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology 61(2):793-796. www.ncbi.nlm.nih.gov/pmc/articles/PMC1388360/pdf/ hw0793.pdf

Gouda S, Kerry RG, Das G. Paramithiotis S, Shin HS and Patra JK. 2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research 206:131-140. Doi:10.1016/j. micres.2017.08.016

Gutiérrez CO, Navarro ILF, Loeza LPD, Del Río ROG y Jiménez MR. 2017. Perfiles de resistencia a antibióticos y metales pesados en Pseudomonas aeruginosa potencialmente patógenas aisladas de agua de uso agrícola. Nova Scientia 9(19):97-112. Doi:10.21640/ns.v9i19.957

Hussain W, Elzaawely AA, El Sheery NI, Ismail AA and ElZahaby HM. 2017. Biological control of onion white rot disease caused by Sclerotium cepivorum. Environment, Biodiversity & soil Security 1:101-107. Doi:10.21608/ JENVBS.2017.1547.1008

Jayakumar AK, Krishna A, Mohan M, Nair CI and Radhakrishnan EK. 2018. Plant growth enhancement, disease resistance,1. and elemental modulatory effects of pant probiotic endophytic Bacillus sp FcL. Probiotics Antimicrob Proteins 1-9. Doi:10.1007/s12602-018-9417-8

Klein JM, Loper JE and Stockwell VO. 2017. Influence of endogenous plasmids on phenotypes of Pantoea vagans Strain C9-1 associated whit epiphytic fitness. Journal of Plant Pathology 99:81-89. Doi:10.4454/jpp.v99i0.3914

Kumar GP, Kumar De T and Kanti MT. 2015. Production and etabolism of indole acetic acid in root nodules and simbiont (Rhizobium undicola) isolated from root nodule of aquatic medicinal legue Neptunia oleracea Lour. Journal of Botany 1-11. Doi:10.1155/2015/575067

Kumbhar VR, Mane, SR, Birajdar GM, Bansode SA, Swami CS and Bhale UN. 2018. Physicochemical characterization and papulation dynamics of mycoflora in infected rhizosphere soil of onion white rot caused by Sclerotium cepivorum. Internationa Journal of current Microbiology and Applied Sciences 7(8):3771-3780. Doi:10.20546/ijcmas.2018.708.384

Latif KA, Ahmed HB, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A and In-Jung L. 2016. Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solarium lycopersicum. Electronic Journal of Biotechnology 19(3).58-64. Doi:10.1016/j. ejbt.2016.02.001

Louden CB, Haarman D and Lynne MA. 2011. Use of blue agar CAS assay for siderophore detection. Journal of Microbiology & Biology Education 12(1):51-53. Doi:10.1128/ jmbe.v12i1.249

Luna ML, Martínez PR, Hernández IM, Arvizu MSM y Pacheco AJR. 2013. Caracterización de rizobacterias aisladas de tomate y su efecto en el crecimiento de tomate y pimiento. Revista Fitotecnia Mexicana 36(1):63-69. www.scielo.org. mx/pdf/rfm/v36n1/v36n1a7.pdf

Mahmood NS, Ahmad M, Zahir AZ, Javaid A and Ashraf M. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology advances 32(2):429-448. Doi:10.1016/j.biotechadv.2013.12.005

Mejía-Bautista MA, Reyes-Ramírez A, Cristóbal-Alejo J, Tun-Suárez M y Borges-Gómez LC. 2016. Bacillus spp. en el control de marchitez causada por Fusarium spp. en Capsicum chinense. Revista Mexicana de Fitopatología 34(3):208-222. Doi:10.18781/R.MEX.FIT.1603-1.

Moreno RA, García MV, Reyes CJL, Vázquez AJ y Cano RP. 2018. Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Bioctecnología 20(1): 68-83. Doi:10.15446/rev.colomb.biote.v20n1.73707

Ortega-Aguilar BL, Alarcón A and Ferrera-Cerrato R. 2011. Effect of potassium bicarbonate on fungal growth and sclerotia of Sclerotium cepivorum and its interaction with Trichoderma. Revista Mexicana de Micología 33:53-61. www.redalyc.org/articulo.oa?id=88319884007

Paredes-Escalante JE, Carrillo-Fasio JA, García-Estrada RS, Allende-Molar R, Sañudo-Barajas JA y Valdez-Torres JB. 2009. Microorganismos antagonistas para el control del complejo de hongos causantes de la rabia del garbanzo (Cicerarietinum L.) en el Estado de Sinaloa, México. Revista Mexicana de Fitopatología 27(1):27-35. www.redalyc.org/articulo.oa?id=61211414004

Reveles-Hernández M, Velázquez-Valle R, Reveles-Torres LR y Cid-Ríos JA. 2014. Guía para la producción de cebolla en Zacatecas. Folleto Técnico No. 62. Campo experimental Zacatecas, CIRNOCINIFAP, Calera, Zac., México. 40. www.zacatecas.inifap.gob.mx/publicaciones/prodCebolla. pdf

Rivera-Méndez W, Zúñiga-Vega C y Brenes-Madriz J. 2016. Control biológico del hongo Sclerotium cepivorum utilizado Trichoderma asperellum en el cultivo de ajo en Costa Rica. Tecnología en Marcha 41-50. Doi:org/10.18845/ tm.v29i7.2704

Rodríguez GCA, Bultrago JE, Betancurt AD y Lara CR. 2017. Actividad antagonista de Bacillus frente a Fusarium oxysporum: un aporte a la agricultura sostenible. Revista Nova 3:9-19. http://revistas.sena.edu.co/index.php/rnova/article/ view/1515/1691

Sánchez LDB, Pérez PJV y David HHA. 2016. Efecto de la PGPB sobre el crecimiento Pennisetum clandestinum bajo condiciones de estrés salino. Revista Colombiana de Biotecnología 18(1):65-72. Doi:10.15446/rev.colmb.biote. v18n1.50413

Sarmiento GA y Velandía MJ. 2013. Evaluación de hongos y bacterias aislados de gallinaza en biocontrol de Sclerotium cepivorum Berk. Ciencia y Agricultura 10(2):37-43. Doi.10.19053/01228420.2839

Sarti GC y Miyazaki SS. 2013. Actividad antifúngica de Extractos crudos de Bacillus subtilis contra fitopatógenos de Soja (Glycine max) y efecto de su coinoculación con Bradyrhizobium japonicum. Agrociencia 47(4):373-383. www.scielo.org.mx/pdf/agro/v47n4/v47n4a6.pdf

Schwyn B y Neilands JB. 1987. Ensayo químico universal para la detección y determinación de sideróforos. 160(1):47-56. Doi.org/10.1016/0003-2697(87)90612-9

Soto CF, Tramón PC, Aqueveque MP, and de Bruijn J. 2018. Antagonist microorganisms that inhibit the development of post-hasrvest pathogens in lemons (Citrus limon L.). Chilean Journal of Agricultural & Animal Science 34(2):173184. Doi:10.4067/S0719-38902018005000406

Vega-Celedón P, Canchignia MH, González M y Seeger M. 2016. Biosintesis de ácido indol-3-acético y promoción del crecimiento de plantas por bacterias. Cultivos Topicales. 37: 33-39. Doi:10.13140/RG.2.1.5158.3609

Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA y Estrada-Alvarado MI. 2018. El género Bacillus como agente de control biológico y sus implicaciones en la bio-seguridad agrícola. Revista Mexicana de Fitopatología 36(1):95-130. Doi:10.18781/R.MEX.FIT.1706-5

Vimard B, Leggett ME and Rahe JE. 1986. Rapid isolation of Sclerotia of Sclerotium cepivorum from muck soil by sucrose centrifugation. The American Phytopathology Society 76(4):465-467.www.apsnet.org/publications/ phytopathology/backissues/Documents/1986Articles/ Phyto76n04_465.PDF

Vurukonda SS, Vardharajula S, Shrivastava M and SkZ A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research 184: 13-24. Doi:10.1016/j.micres.2015.12.003




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1911-2

Refbacks

  • There are currently no refbacks.