The Burkholderia genus: between mutualism and pathogenicity

David Espinosa-Victoria, Lucía López-Reyes, Moisés Graciano Carcaño-Montiel, María Serret-López

Abstract


Burkholderia is an ambivalent genus because some of its species establish symbiotic-mutualistic relationships with plants, and symbiotic-pathogenic relationships with plants, animals, and humans. Since the phytopathogenic bacterium B. cepacia was reported as a nosocomial opportunist, associated with cystic fibrosis, the concern about possible infections in humans arose. The objective of this contribution was to make an analysis of Burkholderia’s functional versatility and its effect on human health. Burkholderia harbored about 100 species and the B. cepacia complex (BCC) consisting of 22 species. At the beginning, the existence of two lineages within the genus was determined: the A that included several species that were associated with plants, as well as the saprophytes; and B containing BCC species (human pathogenic opportunists), the B. pseudomallei subgroup that included human and animal pathogens, and a group of plant pathogenic species. Finally, some individuals were renamed as Paraburkholderia and Cablleronia. Recent analyzes of burkholderias from humans and the environment indicate that there is no phylogenetic subdivision that distinguishes between beneficial and pathogenic ones. Hence the importance of considering risks to human health, when any member of this group is employed in agricultural activities.


Keywords


Burkholderia; Paraburkholderia; Caballeronia; mutualism; parasitism; cystic fibrosis

Full Text:

PDF

References


Anderson DH. 1938. Cystic fibrosis of the pancreas and its relation to celiac disease: a clinical and pathologic study. The American Journal of Diseases of Children 56:344-399. http://dx.doi.org/10.1001/archpedi.1938.01980140114013

Angus AA, Agapakis CM, Fongm S, Yerrapragada S, Estrada-de los Santos P, Yang P, Song N, Kano S, Caballero-Mellado J, de Faria SM, Dakora FD, Weinstock G, and Hirsch AM. 2014. Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis. Public Library of Science ONE 9: e83779. http://dx.doi.org/10.1371/journal.pone.0083779

Angus AA, Lee A, Lum MR, Shehayeb M, and Hessabi R. 2013. Nodulation and effective nitrogen fixation of Macroptilium atropurpureum (siratro) by Burkholderia tuberum, a nodulating and plant growth promoting betaproteobacterium, are influenced by environmental factors. Plant and Soil 369:543–562. http://dx.doi.org/10.1007/s11104-013-1590-7

Bevivino A, Sarrocco S, Dalmastri C, Tabacchioni S, Cantale C, and Chiarini L. 1998. characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiology Ecology 27:225–237. http://dx.doi.org/10.1016/S0168-6496(98)00069-5

Bianciotto V, Lumini E, Bonfante P, and Vandamme P. 2003. ‘Candidatus Glomeribacter gigasporarum’ gen nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. International Journal of Systematic and Evolutionary Microbiology 53:121–124. http://dx.doi.org/10.1099/ijs.0.02382-0

Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, and Perotto S. 2000. Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Applied and Environmental Microbiology 66:4503–4509. http://dx.doi.org/10.1128/aem.66.10.4503-4509.2000

Burkhead KD, Schisler DA, and Slininger PJ. 1994. Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Applied and Environmental Microbiology 60:2031–39. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC201598/pdf/aem00023-0337.pdf

Burkholder W. 1950. Sour skin, a bacterial rot of onion bulbs. Phytopathology 64:468–475. https://www.cabdirect.org/cabdirect/abstract/19501101355

Burns JL, Emerson J, Stapp JR, Yim DL, Krzewinski J, Louden L, Ramsey BW, and Clausen CR. 1998. Microbiology of sputum from patients at cystic fibrosis centers in the United States. Clinical Infectious Diseases 27:158–163. http://dx.doi.org/10.1086/514631

Caballero-Mellado J, Martínez-Aguilar L, Pardes-Valdez G, and Estrada-de los Santos P. 2004. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophitic species. International Journal of Systematic and Evolutionary Microbiology 54:1165-1172. http://dx.doi.org/10.1099/ijs.0.02951-0

Cartwright DK, Chilton WS, and Benson DM. 1995. Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Applied Microbiology and Biotechnology 43:211–16. https://link.springer.com/content/pdf/10.1007%2FBF00172814.pdf

Chen K, Zhu Q, Qian Y, Song Y, Yao J, and Choi MMF. 2013. Microcalorimetric investigation of the effect of non-ionic surfactant on biodegradation of pyrene by PAH-degrading bacteria Burkholderia cepacia. Ecotoxicology and Environmental Safety 98:361-367. http://dx.doi.org/10.1016/j.ecoenv.2013.08.012

Chen WM, de Faria SM, James EK, Elliott GN, Lin K, Chou JH, Sheu SY, Cnockaert M, Sprent JI, and Vandamme P. 2007. Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. International Journal of Systematic and Evolutionary Microbiology 57:1055–1059. http://dx.doi.org/10.1099/ijs.0.64873-0

Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, and Visca P. 2006. Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends in Microbiology 14:277-286. http://dx.doi.org/10.1016/j.tim.2006.04.006

Chun H, Choi O, Goo E, Kim N, Kim H, Kang Y, Kim J, Moon JS & Hwang I. 2009. The quorum sensing-dependent gene katG of Burkholderia glumae is important for protection from visible light. US: Journal of Bacteriology, 191:4152-4157. http://dx.doi.org/:10.1128/JB.00227-09

Coeyne T, Henry D, Speert DP and Vandamme P. 2004. Burkholderia phenoliruptrix sp. nov., to accommodate the 2,4,5trichlorophenoxyacetic acid and halophenol-degrading strain AC1100. Systematic and Applied Microbiology 27: 623–627. http://dx.doi.org/:10.1078/0723202042369992

Coenye T, Mahenthiralingam E, Henry D, Lipuma JJ, Laevens S, Gillis M, Speert DP, and Vandamme P. 2001. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. International Journal of Systematic and Evolutionary Microbiology 51:1481–1490. http://dx.doi.org/10.1099/00207713-51-4-1481

De los Santos-Villalobos S, Barrera-Galicia GC, Miranda-Salcedo MA, and Pena-Cabriales JJ. 2012. Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides. World Journal of Microbiology and Biotechnology 28:2615–2623. http://dx.doi.org/10.1007/s11274-012-1071-9

De Smet B, Mayo M, Peeters C, Zlosnik JE, Spilker T, Hird TJ, LiPuma JJ, Kidd TJ, Kaestli M, Ginther JL, Wagner DM, Keim P, Bell SC, Jacos JA, Currie BJ, and Vandamme P. 2015. Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources. International Journal of Systematic and Evolutionary Microbiology 65: 2265–2271. http://dx.doi.org/10.1099/ijs.0.000251

Dobritsa AP, and Samadpour M. 2016. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. International Journal of Systematic and Evolutionary Microbiology 66: 2836–2846. http://dx.doi.org/10.1099/ijsem.0.001065

Estrada-de los Santos P, Martínez-Aguilar L, Vinuesa P, Hirsch AM, and Caballero-Mellado J. 2013. Phylogenetic analysis of Burkholderia species by Multilocus Sequence Analysis. Current Microbiology 67:51–60. http://dx.doi.org/10.1007/s00284-013-0330-9

Estrada-de los Santos P, Rojas-Rojas FU, Tapia-García EY, Vásquez-Murrieta MS, and Hirsch AM. 2015. To split or not to split: an opinion on dividing the genus Burkholderia. Annals of Microbiology 66:1303-1314. http://dx.doi.org/10.100 7/s13213-015-1183-1

Farias SJA. 2008. Burkholderia cepacia (B. cepacia). Nuevo patógeno de infecciones nosocomiales. Serie de casos clínicos. Enfermedades Infecciosas y Microbiología Clínica 28:19-23. https://www.medigraphic.com/pdfs/micro/ei-2008/ei081d.pdf

Ferrer M, Golyshin P and Timmis KN. 2003. Novel maltotriose esters enhance biodegradation of Aroclor 1242 by Burkholderia cepacia LB400. World Journal of Microbiology and Biotechnology 19: 637–643. https://doi.org/10.1023/A:1025124019986

Garrity G, Staley JT, Boone DR, De Vos P, Goodfellow M, Rainey F A, and Schleifer KH. 2006. Bergey’s Manual of Systematic Bacteriology: Volume Two: The Proteobacteria. D. J. Brenner, & N. R. Krieg (Eds.). Springer Science & Business Media. https://www.springer.com/gp/book/9780387241449

Ghosh R, Barman S, Mukherjee R, and Mandal, L. 2016. Role of solubilizing Burholderia spp. for successful and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India. Microbial Research 183: 80-91. http://dx.doi.org/10.1016/j.micres.2015.11.011

Gilligan PH. 1991. Microbiology of airway disease in patients with cystic fibrosis. Clinical Microbiological Reviews 4:35–51. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC358177/pdf/cmr00042-0051.pdf

Gillis M, Vanvan T, Bardin R, Goor M, Hebbar P, Willems A, Segers P, and Kersters K. 1995. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp-nov for N-2-fixing isolates from rice in Vietnam. International Journal of Systematic and Evolutionary Microbiology 45:274–289. https://www.microbiologyresearch.org/docserver/fulltext/ijsem/45/2/ijs-45-2-274.pdf?expires=1570735297&id=id&accname=guest&checksum=A3753345BCC75CCA575AEFC833B09F8F

Govan JRW, and Deretic V. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiological Reviews 60:539–574. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239456/pdf/600539.pdf

Gyaneshwar P, Kumar GN, and Parekh L. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245:83–93. https://link.springer.com/content/pdf/10.1023%2FA%3A1020663916259.pdf

Heungens K, and Parke JL. 2000. Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDRI on two oomycete pathogens of pea (Pisum sativum L.). Applied and Environmental Microbiology 66:5192–5200. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC92443/pdf/am005192.pdf

Huang Y, and Wong PTW. 1998. Effect of Burkholderia (Pseudomonas) cepacia and soil type on the control of crown rot in wheat. Plant and Soil 203:103–108. https://link.springer.com/content/pdf/10.1023%2FA%3A1004377801490.pdf

Ibarguren PM, Cobos-Trigueros N, Soriano A, Martínez JA, Zboromyrska Y, Almela M, y Mensa J. 2011. Bacteriemias por Burkholderia cepacia: análisis prospectivo de 33 episodios. Revista Española de Quimioterapia 24:209-212.https://seq.es/seq/0214-3429/24/4/ibarguren.pdf

Isles A, Maclusky I, Corey M, Gold R, Prober C, Fleming P, and Levison H. 1984. Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. Journal Pediatrics 104: 206–210. http://dx.doi.org/10.1016/S0022-3476(84)80993-2

Jacobs JL, Fasi AC, Ramette A, Smith JJ, Hammerschmidt R, and Sundin GW. 2008. Identification and onion pathogenicity of Burkholderia cepacia Complex isolates from the onion rhizosphere and onion field soil. Applied and Environmental Microbiology 74:3121–3129. http://dx.doi.org/10.1128/AEM.01941-07

Ham JH, Melanson RA & Rush MC. 2011. Burkholderia glumae: next major pathogen of rice? Molecular Plant Pathology 12: 329–339. http://dx.doi.org/:10.1111/j.1364-3703.2010.00676.x

Jiao Y, Yoshihara T, Ishikuri S, Uchino H, and Ichihara A. 1996. Structural identification of cepaciamide A, a novel fungitoxic compound from Pseudomonas cepacia D-202. Tetrahedron Letters 37:1039–1042. http://dx.doi.org/10.1016/0040-4039(95)02342-9

Jin Y, Zhou J, Zhou J, Hu M, Zhang Q, Kong Na, Ren H, Liang L and Yue J. 2020. Genome-based classification of Burkholderia cepacia complex provides new insight into its taxonomic status. Biology Direct 15 (6): 1-14. https://doi.org/10.1186/s13062-020-0258-5

Kang Y, Carlson R, Tharpe W, and Schell MA. 1998. Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Applied and Environmental Microbiology 64:3939-3947. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC106582/pdf/am003939.pdf

Keith L y Thammakijjawat P. 2019. Detection of Burkholderia glalioli in Orchids. https://doi.org/10.1094/9780890545416.048

Kim J, Kang Y, Choi O, Jeong Y, Jeong Y, Jeong J-E, Lim JY, Kim M, Moon JS, Suga H & Hwang I. 2007. Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae. Molecular Microbiology, 64(1), pp.165–179. http://dx.doi.org/:10.1111/j.1365-2958.2007.05646.x

Knudsen GR, and Spurr HW Jr. 1987. Field persistence and efficacy of five bacterial preparations for control of peanut leaf spot. Plant Disease 71:442–445. https://www.apsnet.org/publications/PlantDisease/BackIssues/Documents/1987Articles/PlantDisease71n05_442.PDF

Larsen GY, Stull TL, and Burns JL. 1993. Marked phenotypic variability in Pseudomonas cepacia isolated from a patient with cystic fibrosis. Journal of Clinical Microbiology 31:788–792. https://jcm.asm.org/content/jcm/31/4/788.full.pdf

Lee CH, Kim S, Hyun B, Suh JW, and Yon C, 1994. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. I. Taxonomy, production, isolation and biological activity. The Journal of Antibiotics (Tokyo) 47:1402–1405. http://dx.doi.org/10.7164/antibiotics.47.1402

Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, and Inglis TJJ. 2003. Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Applied and Environmental Microbiology 69:6250–6256. http://dx.doi.org/10.1128/aem.69.10.6250-6256.2003

Mahenthiralingam E, Baldwin A, and Dowson CG. 2008. Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. Journal of Applied Microbiology 104:1539–1551. http://dx.doi.org/10.1111/j.1365-2672.2007.03706.x

Martin FN, and Loper JE. 1999. Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Critical Reviews in Plant Sciences 18:111–81. http://dx.doi.org/10.1080/07352689991309216

Martínez-Aguilar L, Salazar-Salazar C, Díaz-Méndez R, Caballero-Mellado J, Hirsch AM, Vásquez-Murrieta MS, and Estrada-de los Santos P. 2013. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris. Antonie van Leeuwenhoek 104:1063–1071. http://dx.doi.org/10.1007/s10482-013-0028-9

Minerdi D, Fani R, Gallo R, Boarino A, and Bonfante P. 2001. Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Applied and Environmental Microbiology 67:725–732. http://dx.doi.org/10.1128/AEM.67.2.725-732.2001

Mirghasempour S.A.,Huang S., Xie G. L. 2018. First report of Burkholderia gladioli causing rice panicle blight and grain discoloration in China. https://doi.org/10.1094/PDIS-05-18-0758-PDN

Moon SS, Kang PM, Park KS, and Kim CH. 1996. Plant growth promoting and fungicidal 4-quinolinones from Pseudomonas cepacia. Phytochemistry 42:365–368. http://dx.doi.org/10.1016/0031-9422(95)00897-7

Nandakumar R, Shahjahan AK, Yuan XL, Dickstein ER, Groth DE, Clark CA, Cartwright RD & Rush MC. 2009. Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. US: Plant Disease 93: 896-905. http://dx.doi.org/:10.1094/PDIS-93-9-0896

Oren A, and Garrity GM. 2015b. List of new names and new combinations previously effectively, but not validly, published. International Journal of Systematic and Evolutionary Microbiology 65: 2777–2783. http://dx.doi.org/10.1099/ijsem.0.000464

O´Sullivan LA, and Mahenthiralingam E. 2005. Biotechnological potential within the genus Burkholderia. Letters in Applied Microbiology 41:8–11. http://dx.doi.org/10.1111/j.1472-765X.2005.01758.x

Parke JL, and Gurian-Sherman D. 2001. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annual Review of Phytopathology 39:225–258. http://dx.doi.org/10.1146/annurev.phyto.39.1.225

Parker WL, Rathnum ML, Seiner V, Trejo WH, Principe PA, and Sykes RB. 1984. Cepacin A and cepacin B, two new antibiotics produced by Pseudomonas cepacia. The Journal of Antibiotics 37:431–40. http://dx.doi.org/10.7164/antibiotics.37.431

Parra-Cota FI, Peña-Cabriales JJ, de los Santos-Villalobos S, Martínez-Gallardo NA, and Délano-Frier JP. 2014. Burkholderia ambifaria and B. caribensis promote growth and Increase yield in rain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake. Public Library of Science ONE 9:e88094. http://dx.doi.org/10.1371/journal.pone.0088094

Partida-Martinez LP, Groth I, Schmitt I, Richter W, Roth M, and Hertweck, C. 2007. Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. International Journal of Systematic and Evolutionary Microbiology 57:2583–2590. http://dx.doi.org/10.1099/ijs.0.64660-0

Peeters C, Meier-Kolthoff JP, Verheyde B, De Brandt E, Cooper VS, and Vandamme P. 2016. Phylogenomic study of Burkholderia glathei-like organisms, proposal of 13 novel Burkholderia species and emended descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae. Frontiers in Microbiology. 7:1-19. http://dx.doi.org/10.3389/fmicb.2016.00877

Pérez C y Saavedra E. 2011. Avances en el manejo integrado de la bacteria Burkholderia glumae en el cultivo de arroz en el Caribe colombiano. Colombia: Revista Colombiana de Ciencia Animal 3(1): 111-124. https://doi.org/10.24188/recia.v3.n1.2011.344

Plangklang P and Reungsang A. 2008. Effects of rhizosphere remediation and bioaugmentation on carbofuran removal from soil. World Journal of Microbiology & Biotechnology 24:983-989. http://dx.doi.org/10.1007/s11274-007-9562-9

Plangklang P, and Reungsang A. 2011 Bioaugmentation of carbofuran residues in soil by Burkholderia cepacia PCL3: A small-scale field study. International Biodeterioration & Biodegradation 65:902-905. http://dx.doi.org/10.1016/j.ibiod.2011.02.011

Quesada-González A, García-Santamaría F. 2014. Burkholderia glumae en el cultivo de arroz en Costa Rica. Agronomía Mesoamericana 25(2):371-381. https://www.redalyc.org/pdf/437/43731480015.pdf

Ramírez-Rojas S, Osuna-Canizalez FJ, García-Pérez F, Canul-Ku J, Palacios-Talavera A, Hernández-Romano J, Ornelas-Ocampo K y Landa-Salgado P. 2016. Identificación molecular de bacterias asociadas a plantas ornamentales producidas in vitro. Revista Mexicana de Fitopatología 34:173-183. http://dx.doi.org/10.18781/R.MEX.FIT.1511-3

Riordan JR, Rommens JM, Kerem BS, Alon N, Rozmahel R, Grzelczak K, Zielenski J, Lok J, Plasic J, Chou JL, Drumm ML, Ianuzzi MC, Collins FS, and Tsui LC. 1989. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073. http://dx.doi.org/10.1126/science.2475911

Rojas-Rojas FU, López-Sánchez D, Meza-Radilla G, Méndez-Canarios A, Ibarra JA y Estrada-de los Santos P. 2019. El controvertido complejo Burkholderia cepacia, un grupo de especies promotoras del crecimiento vegetal y patógenas de plantas, animales y humanos. Revista Argentina de Microbiología 51 (1): 84-92. http://dx.doi.org/10.1016/j.ram.2018.01.002

Sánchez-Yáñez JM, Villegas Moreno J, Vela-Muzquiz GR, y Márquez-Benavides L. 2014. Respuesta del garbanzo (Cicer arietinum L.) a la inoculación con Azotobacter vineladii y Burkholderia cepacia a dosis reducida de fertilizante nitrogenado. Scientia Agropecuaria 5:115-120. http://www.scielo.org.pe/pdf/agro/v5n3/a01v5n3.pdf

Sayler RJ, Cartwright RD & Yang Y. 2006. Genetic characterization and real-time PCR detection of Burkholderia glumae, a newly emerging bacterial pathogen of rice in the United States. US: Plant Disease 90 (5): 603-610. http://dx.doi.org/:10.1094/PD-90-0603

Sawana A, Adeolu M, y Gupta RS. 2014. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Frontiers in Genetics 5: 1-22. http://dx.doi.org/10.3389/fgene.2014.00429

Seo YS, Lim J, Choi BS, Kim H, and Goo E. 2011. Complete genome sequence of Burkholderia gladiolii BSR3. Journal of Bacteriology 193:3149.http://dx.doi.org/10.1128/JB.00420-11

Shahjahan AKM, Rush MC, Groth D, and Clark C. 2000. Panicle blight. Recent research points to a bacterial cause. Rice Journal 15:26-29. www.ricejournal.com/april2000

Shields MS, Reagin MJ, Gerger RR, Campbell R and Somerville C. 1995. TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4. Applied Environmental Microbiology 61: 1352–1356. https://pubmed.ncbi.nlm.nih.gov/7538275/

Singh RK, Malik N, and Singh S. 2013. Impact of rhizobial inoculation and nitrogen utilization in plant growth promotion of maize (Zea mays L.). Nusantara Bioscience 5:8-14. https://doi.org/10.13057/nusbiosci/n050102

Sokol PA, Darling P, Woods DE, Mahenthiralingam E, and Kooi C. 1999. Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding L-ornithine N (5)-oxygenase. Infection and Immunity 67:4443–55. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC96763/pdf/ii004443.pdf

Stoyanova M, Georgieva L, Moncheva P, and Bogatzevska N. 2013. Burkholderia gladioli and Pseudomonas marginalis pathogens of Leucojum aestivum. Biotechnology & Biotechnological Equipment 27:4069-4073. http://dx.doi.org/10.5504/BBEQ.2012.0139

Suzuki F, Sawada H, Azegami K &. Tsuchiya K. 2004. Molecular characterization of the tox operon involved in toxoflavin biosynthesis of Burkholderia glumae. Journal of General Plant Pathology 70: 97–107. https://doi.org/10.1007/s10327-003-0096-1

Tablan OC, Chorba TL, Schidlow DV, White JW, Hardy KA, Gilligan PH, Morgan WM, and Carson LA. 1985. Pseudomonas cepacia colonization in patients with cystic fibrosis: risk factors and clinical outcome. The Journal of Pediatrics 107:382–387. http://dx.doi.org/10.1016/s0022-3476(85)80511-4

Ulrich RL, DeShazer D, Hines HB, and Jeddeloh JA. 2004. Quorum sensing: a transcriptional regulatory system involved in the pathogenicity of Burkholderia mallei. Infection and Immunity 72:6589–6596. http://dx.doi.org/10.1128/IAI.72.11.6589-6596.2004

Van Borm S, Buschinger A, Boomsma JJ, and Billen J. 2002. Tetraponera ants have gut symbionts related to nitrogenfixing root-nodule bacteria. Proceedings of the Royal Society of London B: Biological Sciences 269:2023–2027. http://dx.doi.org/10.1098/rspb.2002.2101

Van Oevelen S, De Wachter R, Vandamme P, Robbrecht E, and Prinsen E. 2002. Identification of the bacterial endosymbionts in leaf galls of Psychotria (Rubiaceae, angiosperms) and proposal of ‘Candidatus Burkholderia kirkii’ sp. nov. International Journal of Systematic and Evolutionary Microbiology 52:2023–2027. http://dx.doi.org/10.1099/00207713-52-6-2023

Vandamme P, Henry D, Coenye T, Nzula S, Vancanneyt M, Lipuma JJ, Speert DP, and Govan JR. 2002. Burkholderia anthina sp. nov. Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunology & Medical Microbiology 33:143–149. http://dx.doi.org/10.1111/j.1574-695X.2002.tb00584.x

Vandamme P, Holmes B, Coenye T, Goris J, Mahenthiralingam E, Lipuma JJ, and Govan JR. 2003. Burkholderia cenocepacia sp. nov– a new twist to an old story. Research in Microbiology 154:91–96. http://dx.doi.org/10.1016/S0923-2508(03)00026-3

Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, Revets H, and Lauwers S. 1997. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. International Journal of Systematic Bacteriology 47:1188–1200. http://dx.doi.org/10.1099/00207713-47-4-1188

Vandamme P, Mahenthiralingam E, Holmes B, Coenye T, Hoste B, De Vos P, Henry D, and Speert DP. 2000. Identification and population structure of Burkholderia stabilis sp. nov. (Formerly Burkholderia cepacia genomovar IV). Journal of Clinical Microbiology 38:1042–1047. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC86333/pdf/jm001042.pdf

Vermis K, Coenye T, Lipuma JJ, Mahenthiralingam E, Nelis HJ, and Vandamme P. 2004. Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp. nov. International Journal of Systematic and Evolutionary Microbiology 54:689–691. http://dx.doi.org/10.1099/ijs.0.02888-0

Vermis K, Coenye T, Mahenthiralingam E, Nelis HJ, and Vandamme P. 2002. Evaluation of species-specific recA-based PCR tests for genomovar level identification within the Burkholderia cepacia complex. Journal of Medical Microbiology 51:937–940. http://dx.doi.org/10.1099/0022-1317-51-11-937

Vidaver AK, Carlson RR. 1978. Leaf spot of field corn caused by Pseudomonas andropogonis. Plant Disease Report 62:213-216. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1004&context=bpdfpub

Weber CF, and King GM. 2017. Volcanic soils as sources of novel CO-oxidizing Paraburkholderia and Burkholderia: Paraburkholderia hiiakae sp. nov., Paraburkholderia metrosideri sp. nov., Paraburkholderia paradisi sp. nov., Paraburkholderia peleae sp. nov., and Burkholderia alpina sp. nov. a member of the Burkholderia cepacia Complex. Front. Microbiol. 8: 1-10. 207. http://dx.doi.org/10.3389/fmicb.2017.00207

Wiersinga WJ, van der Poll T, White NJ, Day NP, and Peacock SJ. 2006. Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nature Reviews in Microbiology 4:272-282. http://dx.doi.org/10.1038/nrmicro1385

Xin G, Zhang G, Kang JW, Staley JT, and Doty SL. 2009. A diazotrophic, indole-3-acetic acid-producing endophyte from wild cottonwood. Biology and Fertility of Soils. http://dx.doi.org/10.1007/s00374-009-0377-8

Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, and Hashimoto Y. 1992. Proposal of Burkholderia gen nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes, 1981) comb. nov. Microbiology and Immunology 36:1251–1275. http://dx.doi.org/10.1111/j.1348-0421.1992.tb02129.x

Yabuuchi E, Kosako Y, Yano I, Hotta H, and Nishiuchi Y. 1995. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen nov. proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff, 1973) comb. nov., Ralstonia solanacearum (Smith, 1896) comb. nov. Ralstonia eutropha (Davis, 1969) comb. nov. Microbiology and Immunology 39:897–904. http://dx.doi.org/10.1111/j.1348-0421.1995.tb03275.x




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2004-5

Refbacks

  • There are currently no refbacks.