Fast method applied in previous evaluation of resistance of banana to Fusarium oxysporum f. sp. cubense
Abstract
Keywords
Full Text:
PDFReferences
Brakhage AA. 2013. Regulation of fungal secondary metabolism. Nature Reviews Microbiology 11:21-32. https://doi.org/10.1038/nrmicro2916
Buddenhagen IW. 2009. Understanding strain diversity in Fusarium oxysporum f. sp. cubense and history of introduction of ‘tropical race 4’ to better manage banana production. Acta Horticulturae 828:193-204. https://doi.org/10.17660/ActaHortic.2009.828.19
Companioni B, Arzola M, Rodríguez Y, Mosqueda M, Pérez MC, Borrás O, Lorenzo JC and Santos R. 2003. Use of in vitro culture-derived Fusarium oxysporum f. sp. cubense race 1 filtrates for rapid and non-destructive differentiation of field-grown banana resistant from susceptible clones. Euphytica 130:341–347. https://doi.org/ 10.1023/A:1023027604627
Companioni B, Mora N, Arzola M, Ventura J, Pérez MC, Santos R and Lorenzo JC. 2004. Improved technique for rapid and non-destructive in vitro differentiation between resistant and susceptible banana clones Fusarium oxysporum f. sp. cubense. Biotechnology Letters 26 (3):213–216. https://doi.org/10.1023/B:BILE.0000013717.72794.ba
Etzerodt T, Gislum R, Laursen BB, Heinrichson K, Gregersen PL, Jørgensen LN and Fomsgaard IS. 2016. Correlation of deoxynivalenol accumulation in Fusarium-infected winter and spring wheat cultivars with secondary metabolites at different growth stages. Journal Agricultural Food Chemistry 64 (22):4545–4555. https://doi.org/10.1021/acs.jafc.6b01162
FAO. 2017. Global programme on banana Fusarium wilt disease: Protecting banana production from the disease with focus on tropical race 4 (TR4). FAO, Rome, ITA. Disponible en línea: http://www.fao.org/3/a-i7921e.pdf
Li CY, Mostert G, Zuo CW, Beukes I, Yang QS, Sheng O, Kuang RB, Wei YR, Hu CH, Rose L, Karangwa P, Yang J, Deng GM, Liu SW, Gao J, Viljoen A and Yi GJ. 2013. Diversity and distribution of the banana wilt pathogen Fusarium oxysporum f. sp. cubense in China. Fungal Genomics and Biology 3:2-6. https://doi.org/10.4172/2165-8056.1000111
Mert Z and Karakaya A. 2003. Determination of the suitable inoculum concentration for Rhynchosporium secalis seedlings assays. Journal Phytopathology 151:699-701. https://doi.org/10.1046/j.0931-1785.2003.00770.x
Pérez L, Batlle A, Fonseca J and Montenegro V. 2004. Reaction of FHIA hybrids and landraces cultivars to Fusarium wilt caused by Fusarium oxysporum f. sp. cubense. Abstracts of ¨The International Congress on Banana: harnessing research to improve the livelihoods¨. Malasia, July, 6-9, 152p. Disponible en línea: http://file:///C:/Users/Asus/Downloads/IN050500_eng.pdf
Ploetz RC. 2015. Fusarium wilt of banana. Phytopathology 105:1512-1521. https://doi.org/10.1094/PHYTO-04-15-0101-RVW
Ramírez MA, Iglesias LG, Luna M and Castro AA. 2015. In vitro phytotoxicity of culture filtrates of Fusarium oxysporum f. sp. vanillae in Vanilla planifolia Jacks. Scientia Horticulturae 197:573–578. https://doi.org/10.1016/j.scienta.2015.10.019
Ribeiro LR, Amorim AP, Cordeiro ZJM, Silva S and Dita MA. 2011. Discrimination of banana genotypes for Fusarium wilt resistance in the greenhouse. Acta Horticulturae 897 (52):381-386. https//doi.org/10.17660/ActaHortic.2011.897.52
Saraswathi1 MS, Kannan G, Uma S, Thangavelu R and Backiyarani S. 2016. Improvement of banana cv. Rasthali (Silk, AAB) against Fusarium oxysporum f.sp. cubense (VCG 0124/5) through induced mutagenesis: Determination of LD50 specific to mutagen, explants, toxins and in vitro and in vivo screening for Fusarium wilt resistance. Indian Journal of Experimental Biology 54 (5): 345-353. Disponible en línea: https://pubmed.ncbi.nlm.nih.gov/27319054/
Sieber CMK, Lee W, Wong P, Münsterkötter M, Mewes HW, Schmeitzl C, Varga E, Berthiller F, Adam G and Güldener U. 2014. The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS ONE 9 (10): e110311. https://doi.org/10.1371/journal.pone.0110311
Zhang X, Wu Q, Cui S, Ren J, Qian W, Yang Y, He S, Chu J, Sun X, Yan C, Yu X and An C. 2015. Hijacking of the jasmonate pathway by the mycotoxin fumonisin B1 (FB1) to initiate programmed cell death in Arabidopsis is modulated by RGLG3 and RGLG4. Journal of Experimental Botany 66 (9):2709–2721.https://doi.org/10.1093/jxb/erv068
DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2004-1
Refbacks
- There are currently no refbacks.