Symbiotic bacteria associated to Prosthechea citrina, a Mexican endemic orchid

Tomasita Santiago-Gerónimo, Héctor Lozoya-Saldaña, María Lourdes Rodríguez-Mejía

Abstract


Along the process of in vitro plant tissue culture, potential plant pathogenic and/or apparent contaminant microorganisms occur, which eventually cause loss of plant material. The objective of this research was to identify endophytic bacteria in Prosthechea citrina, an endemic Mexican orchid, by isolating, in vitro culturing, and sequencing the 16S gen from ribosomal RNA of the bacterial isolates. Aeromonas hydrophila and Enterobacter sp. were identified as symbionts, non-pathogenic, from the bulb and the lower part of the leaf, and A. hydrophila in the middle and top of the leaf. Four antibiotics were evaluated for their in vitro control using the disc-plate method, quantifying the colony diameter growth. The highest statistically significant inhibition halos were obtained with Oxytetracycline for A. hydrophila, and with ampicillin for Enterobacter sp. The presence of endophytic bacteria is demonstrated, with tissue specificity location, as well as the corresponding inhibitory antibiotic.

Keywords


Symbioses; endophytic bacteria; antibiotics

Full Text:

PDF

References


Alvarado Y. 1998. Contaminación microbiana en el cultivo in vitro de plantas. En: Pérez Ponce JN. (Ed), Propagación y Mejora Genética de Plantas por Biotecnología. Instituto de Biotecnología de las Plantas. pp 81-84.

Aytac SA and Gorris LG. 1994. Survival of Aeromonas hydrophila and Listeria monocytogenes on fresh vegetables stored under moderate vacuum. World Journal of Microbiology and Biotecnology 10: 670-672. https://doi.org/10.1007/bf00327956

Bertani G. 1951. Studies on lysogenesis I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology 62(3): 293-300. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC386127/?page=1

Chye Y, Yin Y, Rohani R, Weber JF and Bhore S. 2013. Diversity of endophytic bacteria in Malaysian plants as revealed by 16S rRNA encoding gene sequence-based method of bacterial identification. Journal Young Pharmacology 5(3):95-97. https://doi.org/10.1016/j.jyp.2013.07.001

Cruz M, Acosta M, Leiva M, Alvarado Y y Lazcano M. 2006. Evaluación del efecto carbendazin-?-ciclodextrina para el control de hongos filamentosos contaminantes del cultivo in vitro de plantas. Biotecnología vegetal 2(2):73-76. https://revista.ibp.co.cu/index.php/BV/article/view/137/566

Fernándes GRJ, Pedrinho EAN, Castellane TCL and Lemos EGM. 2011. Auxin-producing bacteria isolated from the roots of Cattleya walkeriana, an endangered Brazilian orchid, and their role in acclimatization. Revista Brasileira de Ciencias do Solo 35(3): 729-737 https://doi.org/10.1590/s0100-06832011000300008

Ginestrea M, Rincón G, Romero S, Harris B, Castellano M y Colina G. 2005. Especies de Aeromonas en vegetales frescos que se expenden en un Mercado popular de Maracaibo. Revista de la Sociedad Venezolana de Microbiologia 25:96-99.

Gohel V, Singh A, Vimal M, Ashwini D and Chhatpar, HS. 2006. Bioprospecting and antifungal potential of chitinolytic microorganisms. African Journal of Biotechnology 5: 54-72.

Hugh R and Leifson E. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohidrates by various Gram- bacteria. Journal of Bacteriology 66:24-26. https://doi.org/10.1128/jb.66.1.24-26.1953

Muleta D, Aseffa F, Borjesson E and Granhall U. 2013. Phosphate-solubilising rhizobacteria associated with Coffea arabica L. in natural coffee forest of southwestern Ethiopia. Journal the Saudi Society of Agricultural Sciences 12(1): 73-84. https://doi.org/10.1016/j.jssas.2012.07.002

Ocegueda-Reyes MD, Casas-Solís J, Virgen-Calleros G, González-Eguiarte DR and López-Alcocer E. 2020. Isolation, identification and characterization of antagonistic rhizobacteria to Sclerotium cepivorum. Mexican Journal of Phytopathology 38(1): 146-159. https://doi.org/10.18781/R.MEX.FIT.1911-2

Pérez-Cordero A, Tuberquia-Sierra A y Amell-Jímenez D. 2014. Actividad in vitro de bacterias endófitas fijadoras de nitrógeno y solubilizadoras de fosfatos. Agronomía Mesoamericana 25(2): 213-223. https://doi.org/10.15517/am.v25i2.15425

Ramírez-Villalobos M, Santos A y Risea R. 2000. Hongos contaminantes en el establecimiento in vitro de segmentos nodales de Psidium guajava. Revista de la Facultad de Agronomía 17(3): 217-225. https://produccioncientificaluz.org/index.php/agronomia/article/view/26353

Ramírez-Villalobos M y Salazar E. 1997. Establecimiento in vitro de segmentos nodales de guayabo (Psidium guajava L.). Revista de la Facultad de Agronomía. 14:497-506.

Ramos ZE, Salgado TJ y Hernández AT. 2007. Estudio de bacterias asociadas a orquídeas (Orchidaceae). Lankesteriana 7(1-2): 322-325. https://doi.org/10.15517/lank.v7i1-2.19556

Reed BM and Tanprasert P. 1995. Detection and control of bacterial contaminants of plant tissue cultures. Plant Tissue Culture and Biotechnology 1(3): 137-142. https://www.researchgate.net/publication/222714440_Detection_and_control_of_bacterial_contaminants_of_plant_tissue_cultures_A_review_of_recent_literature

Schaad NW, Johnes JB and Chun W. 2001. Laboratory guide for the identification of plant pathogenic bacteria. APS, St. Paul, Minn., USA. 373 pp.

Tsavkelova E. 2011. Bacteria Associated with Orchid Roots. En: Maheshwari DK (Ed.). Bacteria in Agrobiology: Plant Growth Responses. Springer-Verlag Berlin Heidelberg Pp 221-258. https://doi.org/10.1007/978-3-642-20332-9_11

Whitaker BK and Bakker MG. 2019. Bacterial endophyte antagonism toward a fungal pathogen in vitro does not predict protection in live plant tissue. FEMS Microbiology Ecology 95(2):1-11. https://doi.org/10.1093/femsec/fiy237

Wilkinson KG, Dixson KW and Sivasithamparam K. 1989. Interaction of soil bacteria, mycorrhizal fungi and orchid seed in relation to germination of Australian orchids. New Phytologyst 112(3): 429-435 https://doi.org/10.1111/j.1469-8137.1989.tb00334.x




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2004-2

Refbacks

  • There are currently no refbacks.