Morphological characterization of Phytophthora capsici isolates from Jalisco and Michoacán, Mexico

Alfredo Reyes-Tena, Gerardo Rodríguez-Alvarado, Sylvia P. Fernández-Pavía, Martha E. Pedraza-Santos, John Larsen, Gerardo Vázquez-Marrufo

Abstract


Phytophthora capsici is the main phytopathogen of the chili pepper crop (Capsicum annuum) and diverse commercial plants in Mexico. The limited knowledge of farmers on the presence of this pathogen in cropping areas makes it difficult to prevent and manage the disease. In order to identify and morphologically characterize isolates obtained from cucurbits and solanaceous crops with “wilt” symptoms, in Jalisco and Michoacán, Mexico, samples were collected during 2016 and 2017. The 41 P. capsici isolates obtained from diseased plants were analyzed by comparative morphology based on sexual and asexual characteristics. Were characterized 33 isolates from the C. annuum crop, six from C. pepo and two S. lycopersicum. Most isolates showed typical characteristics of P. capsici, whereas only one isolate showed terminal, globose chlamydospores (isolated from Queréndaro, Mich.). Forty heterothallic isolates were registered and only one homothallic isolate was reported. The pathogenicity of seven isolates was tested, therefore according to the results obtained, P. capsici is the main causal agent of wilt for these isolates and for seven more analyzed in a previous study, the remaining 27 are associated with the disease. Calling for the development of a strategy for integrated management of this pathogen in the Jalisco and Michoacán production areas.


Keywords


Capsicum; Cucurbita; isolation; chili wilt; diagnosis

Full Text:

PDF

References


Abad ZG, Burgess T, Bienapfl JC, Redford AJ, Coffey M and Knight L. 2019. IDphy: Molecular and morphological identification of Phytophthora based on the types. USDA APHIS PPQ S&T Beltsville Lab, USDA APHIS PPQ S&T ITP, Centre for Phytophthora Science and Management, and World Phytophthora Collection. http://idtools.org/id/phytophthora/tabular_key.php

Almaraz-Sánchez A, Alvarado-Rosales D y Saavedra-Romero LL. 2013. Trampeo de Phytophthora cinnamomi en bosque de encino con dos especies ornamentales e inducción de su esporulación. Revista Chapingo. Serie Ciencias Forestales y del Ambiente 19(1): 5-12. http://dx.doi.org/10.5154/r.rchscfa.2011.09.062

Anaya-López JL, González-Chavira MM, Villordo-Pineda E, Rodríguez-Guerra R, Rodríguez-Martínez R, Guevara-González RG, Guevara-Olvera L, Montero-Tavera V y Torres-Pacheco I. 2011. Selección de genotipos de chile resistentes al complejo patogénico de la marchitez. Revista Mexicana de Ciencias Agrícolas 2(3): 373-383. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342011000300006&lng=es&nrm=iso&tlng=es

Aragaki M and Uchida JY. 2001. Morphological distinctions between Phytophthora capsici and P. tropicalis sp. nov. Mycologia 93(1): 137-145. https://www.jstor.org/stable/3761611

Babadoost M and Pavon C. 2013. Survival of oospores of Phytophthora capsici in soil. Plant Disease 97(11): 1478-1483. https://doi.org/10.1094/PDIS-12-12-1123-RE

Barchenger DW, Lamour KH and Bosland PW. 2018. Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici. Frontiers in Plant Science 9: 628. https://doi.org/10.3389/fpls.2018.00628

Bautista-Calles JR, García-Espinosa R, Zavaleta-Mejía E, Pérez-Moreno J, Montes-Belmont R, Ferrera-Cerrato R and Huerta-Lara M. 2010. Disminución de la marchitez del chile (Phytophthora capsici Leo) con complejidad ascendente de antagonistas en el sustrato de germinación del chile (Capsicum annuum L.). Interciencia 35(9): 613-618. https://www.redalyc.org/pdf/339/33914212007.pdf

Bi Y, Hu J, Cui X, Shao J, Lu X, Meng Q, and Liu X. 2014. Sexual reproduction increases the possibility that Phytophthora capsici will develop resistance to dimethomorph in China. Plant Pathology 63(6): 1365-1373. https://doi.org/10.1111/ppa.12220

Bowers JH, Martin FN, Tooley PW and Luz EDMN. 2007. Genetic and morphological diversity of temperate and tropical isolates of Phytophthora capsici. Phytopathology 97(4): 492-503. https://doi.org/10.1094/PHYTO-97-4-0492

Castro-Rocha A, Fernández-Pavía SP y Osuna-Ávila P. 2012. Mecanismos de defensa del chile en el patosistema Capsicum annuum-Phytophthora capsici. Revista Mexicana de Fitopatología 30(1): 49-65. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33092012000100005&lng=es&nrm=iso

Castro-Rocha A, Shrestha S, Lyon B, Grimaldo-Pantoja GL, Flores-Marges JP, Valero-Galván J, Aguirre-Ramírez M, Osuna-Ávila P, Gómez-Dorantes N, Ávila-Quezada G, Luna-Ruiz JJ, Rodríguez-Alvarado G, Fernández-Pavía SP and Lamour K. 2016. An initial assessment of genetic diversity for Phytophthora capsici in northern and central Mexico. Mycological Progress 15:15. https://doi.org/10.1007/s11557-016-1157-0

Donahoo RS and Lamour KH. 2008. Interspecific hybridization and apomixes between Phytophthora capsici and Phytophthora tropicalis. Mycologia 100(6): 911-920. https://doi.org/10.3852/08-028

Erwin DC and Ribeiro OK. 1996. Phytophthora Diseases Worldwide. American Phytopathological Society Press. St. Paul, Minnesota. 562 p.

Farhana MDSN, Bivi MR, Khairulmazmi A, Wong SK and Sariah M. 2013. Morphological and molecular characterization of Phytophthora capsici, the causal agent of foot rot disease of black pepper in Sarawak, Malaysia. International Journal of Agriculture and Biology 15(6) 1083-1090. http://www.fspublishers.org/published_papers/70113_..pdf

Fernández-Pavía SP, Biles CL, Waugh ME, Onsurez-Waugh K, Rodríguez-Alvarado G and Lidell CM. 2004. Characterization of southern New Mexico Phytophthora capsici Leonian isolates from pepper (Capsicum annuum L.). Revista Mexicana de Fitopatología 22(1): 82-89. https://www.redalyc.org/articulo.oa?id=61222111

Fernández-Pavía SP, Rodríguez-Alvarado G and Sánchez-Yáñez JM. 2007. Buckeye rot of tomato caused by Phytophthora capsici in Michoacan, Mexico. Plant Disease 87(7): 872-872. https://doi.org/10.1094/PDIS.2003.87.7.872C

French-Monar RD, Jones JB and Roberts PD. 2006. Characterization of Phytophthora capsici associated with roots of weeds on Florida vegetable farms. Plant Disease 90(3): 345-350. https://doi.org/10.1094/PD-90-0345

García-Rodríguez MR, Chiquito-Almanza E, Loeza-Lara PD, Godoy-Hernández H, Villordo-Pineda E, Pons-Hernández JL, González-Chavira J y Anaya-López JL. 2010. Producción de chile ancho injertado sobre Criollo de Morelos 334 para el control de Phytophthora capsici. Agrociencia 44(6): 701-709. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952010000600009&lng=es&nrm=iso

Gevens AJ, Donahoo RS, Lamour KH and Hausbeck MK. 2007. Characterization of Phytophthora capsici from Michigan surface irrigation water. Phytopathology 97(4): 421-428. https://doi.org/10.1094/PHYTO-97-4-0421

Gobena D, Roig J, Galmarini C, Hulvey J and Lamour K. 2012. Genetic diversity of Phytophthora capsici isolates from pepper and pumpkin in Argentina. Mycologia 104(1): 102-107. https://doi.org/10.3852/11-147

Gómez-Rodríguez O, Corona-Torres T and Aguilar-Rincón VH. 2017. Differential response of pepper (Capsicum annuum L.) lines to Phytophthora capsici and root-knot nematodes. Crop Protection 92 (2):148–152. https://doi.org/10.1016/j.cropro.2016.10.023

Granke LL, Quesada-Ocampo LM and Hausbeck MK. 2011. Variation in phenotypic characteristics of Phytophthora capsici isolates from a worldwide collection. Plant Disease 95(9): 1080-1088. https://doi.org/10.1094/PDIS-03-11-0190

Granke LL, Quesada-Ocampo L, Lamour K and Hausbeck MK. 2012. Advances in research on Phytophthora capsici on vegetable crops in the United States. Plant Disease 96(11): 1588-1600. https://doi.org/10.1094/PDIS-02-12-0211-FE

Hurtado-Gonzáles O, Aragon-Caballero L, Apaza-Tapia W, Donahoo R and Lamour K. 2008. Survival and spread of Phytophthora capsici in coastal Peru. Phytopathology 98(6): 688-694. https://doi.org/10.1094/PHYTO-98-6-0688

Iribarren MJ, Pascuan C, Soto G and and Ayub ND. 2015. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island. FEMS Microbiology Letters 362(22): 1-6. https://doi.org/10.1093/femsle/fnv189

Islam SZ, Babadoost M, Lambert NK, Ndeme A and Fouly HM. 2004. Characterization of Phytophthora capsici isolates from processing pumpkin in Illinois. Plant Disease 89(2): 191-197. https://doi.org/10.1094/PD-89-0191

Kamoun S, Furzer O, Jones JDG, Judelson HS, Ali GS, Dalio RJD, Roy SG, Schena L, Zambounis A, Panabières F, Cahill D, Ruocco M, Figueiredo A, Chen XR, Hulvey J, Stam R, Lamour K, Gijzen M, Tyler BM, Grünwald NJ, Mukhtar MS, Tomé DFA, Tör M, Van den ackerveken G, McDowell J, Daayf F, Fry WE, Lindqvist-Kreuze H, Meijer HJG, Petre B, Ristaino J, Yoshida K, Birch PRJ and Govers F. 2015. The top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology 16(4): 413-434. https://doi.org/10.1111/mpp.12190

Lamour KH and Hausbeck MK. 2000. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology 90(4): 396-400. https://doi.org/10.1094/PHYTO.2000.90.4.396

Lamour KH, Stam R, Jupe J and Huitema E. 2012. The oomycete broad-host-range pathogen Phytophthora capsici. Molecular Plant Pathology 13(4): 319-337. https://doi.org/10.1111/j.1364-3703.2011.00754.x

Li Z, Long W, Zheng J and Lei J. 2007. Isolation and identification of Phytophthora capsici in Guangdong Province and measurement of their pathogenicity and physiological race differentiation. Frontiers of Agriculture in China 1(4): 377-381. https://doi.org/10.1007/s11703-007-0063-2

Martin FN, Abad ZG, Balci Y and Ivors K. 2012. Identification and detection of Phytophthora: reviewing our progress, identifying our needs. Plant Disease 96(8): 1080-1103. https://doi.org/10.1094/PDIS-12-11-1036-FE

Meitz JC, Linde CC, Thompson A, Langenhoven S and McLeod A. 2010. Phytophthora capsici on vegetable hosts in South Africa: distribution, host range and genetic diversity. Australasian Plant Pathology 39(5): 431-439. http://link.springer.com/10.1071/AP09075

Morán-Bañuelos SH, Aguilar-Rincón VH, Corona-Torres T y Zavaleta-Mejía E. 2010. Resistencia a Phytophthora capsici Leo. de chiles nativos del sur de Puebla, México. Revista Fitotecnia Mexicana 33(4): 21-26. http://www.scielo.org.mx/scielo.php?script=sci_isoref&pid=S0187-73802010000500006&lng=es&tlng=es

Palma-Martínez E, Aguilar-Rincón VH, Corona-Torres T and Gómez-Rodríguez O. 2017. Resistencia a Phytophthora capsici Leo en líneas de chile huacle (Capsicum annuum L.). Revista Fitotecnia Mexicana 40(3): 359-363. https://www.revistafitotecniamexicana.org/documentos/40-3/13a.pdf

Pérez-Moreno L, Durán-Ortiz LJ, Ramírez-Malagón R, Sánchez-Pale JR y Olalde-Portugal V. 2003. Compatibilidad fisiológica y sensibilidad a fungicidas de aislamientos de Phytophthora capsici Leo. Revista Mexicana de Fitopatología 21(1): 19-25. https://www.redalyc.org/articulo.oa?id=61221103

Pons-Hernández JL, Guerrero-Aguilar BZ, González-Chavira MM, González-Pérez E, Villalobos-Reyes S y Muñoz-Sánchez CI. 2020. Variabilidad fenotípica de aislados de Phytophthora capsici en Guanajuato. Revista Mexicana de Ciencias Agrícolas 11(8): 1891-1901. https://doi.org/10.29312/remexca.v11i8.2618.

Quesada-Ocampo LM and Hausbeck MK. 2010. Resistance in tomato and wild relatives to crown and root rot caused by Phytophthora capsici. Phytopathology 100(6): 619-627. https://doi.org/10.1094/PHYTO-100-6-0619

Raffaele S and Kamoun S. 2012. Genome evolution in filamentous plant pathogens: Why bigger can be better. Nature Reviews Microbiology 10(6): 417-430. https://doi.org/10.1038/nrmicro2790

Reis A, Paz-Lima ML, Moita AW, Aguiar FM, Fonseca MEN, Café-Filho AC and Boiteux LS. 2018. A reappraisal of the natural and experimental host range of neotropical Phytophthora capsici isolates from Solanaceae, Cucurbitaceae, Rosaceae and Fabaceae. Journal of Plant Pathology 100: 215-223. https://doi.org/10.1007/s42161-018-0069-z

Reyes-Tena A, Rincón-Enríquez G, López-Pérez L and Quiñones-Aguilar EE. 2017. Effect of mycorrhizae and actinomycetes on growth and bioprotection of Capsicum annuum L. against Phytophthora capsici. Pakistan Journal of Agricultural Sciences 54(3): 513-522. https://www.pakjas.com.pk/papers/2730.pdf

Reyes-Tena A, Castro-Rocha A, Rodríguez-Alvarado G, Vázquez-Marrufo G, Pedraza-Santos ME, Lamour K, Larsen J and Fernández-Pavía SP. 2019a. Virulence phenotypes on chili pepper for Phytophthora capsici isolates from Michoacán, Mexico. HortScience 54(9): 1526-1531. https://doi.org/10.21273/HORTSCI13964-19

Reyes-Tena A, Huguet-Tapia JC, Lamour KH, Goss EM, Rodríguez-Alvarado G, Vázquez-Marrufo G, Santillán-Mendoza R and Fernández-Pavía SP. 2019b. Genome sequence data of six isolates of Phytophthora capsici from Mexico. Molecular Plant-Microbe Interactions 32(10): 1267-1269. https://doi.org/10.1094/MPMI-01-19-0014-A

Reyes-Tena A, Rodríguez-Alvarado G, Santillán-Mendoza R, Díaz-Celaya M y Fernández-Pavía SP. 2019c. Marchitez causada por Fusarium solani en chile chilaca (Capsicum annuum) en Michoacán. Revista Mexicana de Fitopatología 37(1): 43-47. http://dx.doi.org/10.18781/R.MEX.FIT.1904-1

Rivera-Jiménez MN, Zavaleta-Mancera HA, Rebollar-Alviter A, Aguilar-Rincón VH, García-de-los-Santos G, Vaquera-Huerta H and Silva-Rojas HV. 2018. Phylogenetics and histology provide insight into damping-off infections of ‘Poblano’ pepper seedlings caused by Fusarium wilt in greenhouses. Mycological Progress 17: 1237-1249. https://doi.org/10.1007/s11557-018-1441-2

SADER, Secretaría de Agricultura y Desarrollo Rural. 2020 Servicio de información agroalimentaria y pesquera. https://www.gob.mx/siap (consulta, julio 2020).

Silva-Rojas HV, Fernández-Pavía SP, Góngora-Canul C, Macías-López BC y Ávila-Quezada GD. 2009. Distribución espacio temporal de la marchitez del chile (Capsicum annuum L) en Chihuahua e identificación del agente causal Phytophthora capsici Leo. Revista Mexicana de Fitopatología 27(2): 134-147. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33092009000200006

Silvar C, Merino F and Díaz J. 2006. Diversity of Phytophthora capsici in northwest Spain: analysis of virulence, metalaxyl response, and molecular characterization. Plant Disease 90(9): 1135-1142. https://doi.org/10.1094/PD-90-1135

Soto-Plancarte A, Rodríguez-Alvarado G, Fernández-Pavía YL, Pedraza-Santos ME, López-Pérez L, Díaz-Celaya M y Fernández-Pavía SP. 2017. Protocolos de aislamiento y diagnóstico de Phytophthora spp. enfoque aplicado a la investigación. Revista Mexicana de Ciencias Agrícolas 8(8): 1867-1880. https://www.redalyc.org/articulo.oa?id=263153822011

Velarde-Félix S, Garzón-Tiznado JA, Hernández-Verdugo S, López-Orona CA and Retes-Manjarrez JE. 2018. Occurrence of Fusarium oxysporum causing wilt on pepper in Mexico. Canadian Journal of Plant Pathology 40(2): 238-247. https://doi.org/10.1080/07060661.2017.1420693

Yin J, Jackson KL, Candole BL, Csinos AS, Langston DB and Ji P. 2012. Aggressiveness and diversity of Phytophthora capsici on vegetable crops in Georgia. Annals Applied of Biology 160(2): 191-200. https://doi.org/10.1111/j.1744-7348.2012.00532.x




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2007-5

Refbacks

  • There are currently no refbacks.