Efficacy of microbial antagonists and chitin in the control of Colletotrichum gloeosporioides in postharvest of mango cv. Azúcar

Yimmy Alexander Zapata-Narváez, Luisa Fernanda Izquierdo-García, Blanca Lucía Botina-Azaín, Camilo Rubén Beltrán-Acosta

Abstract


The efficacy in the control of mango cv. Azúcar anthracnose in postharvest was determined by subjecting the fruit to a hydrothermal treatment at 53 °C; later two wounds of 2 mm deep were made and the fruits were immersed in suspensions of the antagonists or chitin in different concentrations. After, each wound was inoculated with a drop of 5 uL of the pathogen, and the fruits were storage at 23 °C. From this trial, Lysinibacillus xylaniticus Ap282, Rhodotorula glutinis Lv316, and chitin 10 mg L-1 were selected for showing an efficacy in the disease control of 49% to 69%. The bioassay was repeated, but adding the chitin to the hydrothermal treatment and evaluating the control of the disease from pathogen’s quiescent infections, storage the fruit at 13 °C. The combination of hydrothermal treatment and tempered of the fruit in the AP282 suspension presented the highest efficacy in the control of anthracnose (84%) in fruits inoculated with the pathogen, while, in the disease control from the quiescent infections, the combination of hydrothermal treatment adding the chitin or tempering in the microbial suspensions showed an efficacy of 83% to 89%.

Keywords


Colletotrichum gloeosporioides; hydrothermal treatment; efficacy; quiescent infections

Full Text:

PDF

References


Alvarado JR y Moreno LA. 2012. Acuerdo de competitividad cadena productiva del mango en Colombia. https://sioc.minagricultura.gov.co/Mango/Normatividad/004%20-%20D.C.%20-%20Acuerdo%20Competitividad%20Cadena%20Mango.pdf. (Consulta, marzo 2021).

Arauz L. 2000. Mango anthracnose: Economic impact and current options for integrated management. Plant Disease 84(6): 600–611. https://doi.org/10.1094/PDIS.2000.84.6.600

Asmar S. 2021. Productores de mango del Magdalena recibieron luz verde para exportar hacia Europa. Agronegocios.https://www.agronegocios.co/agricultura/productores-demango-del-magdalena-recibieron-luz-verde-para-exportar-hacia-europa-3146069. (Consulta, marzo 2021).

Ban Z, Wei W, Yang X, Feng J, Guan J and Li L. 2015. Combination of heat treatment and chitosan coating to improve postharvest quality of wolfberry (Lycium barbarum). International Journal of Food Science and Technology 50(4):1019–1025. https://doi.org/10.1111/ijfs.12734

Bautista-Baños S, Hernández-Lauzardo AN, Velázquez-Del Valle MG, Hernández-López M, Ait Barka E, Bosquez-Molina E and Wilson CL. 2006. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection 25(2): 108–118. https://doi.org/10.1016/j.cropro.2005.03.010

Bautista-Rosales P, Calderon-Santoyo M, Servín-Villegas R, Ochoa-Álvarez N, Vázquez-Juárez R and Ragazzo-Sánchez J. 2014. Biocontrol action mechanisms of Cryptococcus laurentii on Colletotrichum gloeosporioides of mango. Crop Protection (65): 194–201. https://doi.org/10.1016/j.cropro.2014.07.019

Calvente V, Benuzzi D and de Tosetti M. 1999. Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. International Biodeterioration and Bioegradation 43(4): 167–172. https://doi.org/10.1016/S0964-8305(99)00046-3

Chechi A, Stahlecker J, Dowling ME and Schnabel G. 2019. Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pesticide Biochemistry and Physiology (158): 18–24. https://doi.org/10.1016/j.pestbp.2019.04.002

Corrales-Bernal A, Maldonado ME, Urango LA, Franco MC and Rojano BA. 2014. Mango de azúcar (Mangifera indica), variedad de Colombia: características antioxidantes, nutricionales y sensoriales. Revista chilena de nutrición 41(3): 312-318. https://dx.doi.org/10.4067/S0717-75182014000300013

Carrillo-Fasio JA, García-Estrada RS, Muy-Rangel MD, Sañudo-Barajas A, Márquez-Zequera I, Allende-Molar R. 2005. Control Biológico de Antracnosis [Colletotrichum gloeosporioides (Penz.) Penz. y Sacc.] y su Efecto en la Calidad Poscosecha del Mango (Mangifera indica L.) en Sinaloa, México. Revista Mexicana de Fitopatología 23: 24-32. https://www.redalyc.org/pdf/612/61223104.pdf

Corkidi G, Balderas-Ruíz KA, Taboada B, Serrano-Carreón L and Galindo E. 2006. Assessing mango anthracnose using a new three-dimensional image-analysis technique to quantify lesions on fruit. Plant Pathology 55(2): 250–257. https://doi.org/10.1111/j.1365-3059.2005.01321.x

Díaz-García A, García-Riaño J and Zapata-Narváez J. 2015. Improvement of sporulation conditions of a new strain of Bacillus amyloliquefaciens in liquid fermentation. Advances in Bioscience and Biotechnology 6 (4): 302-310. http://dx.doi.org/10.4236/abb.2015.64029

Fallik E. 2004. Prestorage hot water treatments (immersion, rinsing and brushing). Postharvest Biology and Technology 32(2): 125–134. https://doi.org/10.1016/j.postharvbio.2003.10.005

Fallik E, Grinberg S, Alkalai S and Lurie S. 1996. The effectiveness of postharvest hot water dipping on the control of grey and black moulds in sweet red pepper (Capsicum annuum). Plant Pathology 45(4): 644–649. https://doi.org/10.1046/j.1365-3059.1996.d01-175.x

Gámez RM, Rodríguez F, Bernal JF, Agarwala R, Landsman D and Mariño-Ramírez L. 2015. Genome sequence of the Banana plant growth-promoting rhizobacterium Bacillus amyloliquefaciens BS006. Genome announcements 3(6): e01391-15. https://doi.org/10.1128/genomeA.01391-15

Kamle M and Kumar P. 2016. Colletotrichum gloeosporioides: Pathogen of anthracnose disease in Mango (Mangifera indica L.). In: Kumar P, Kumar GV, Kumar TA and Kamle M (Ed.). Current Trends in Plant Disease Diagnostics and Management Practices, Fungal Biology. 207–219. https://doi.org/10.1007/978-3-319-27312-9_9

Karabulut O and Baykal N. 2004. Integrated control of postharvest diseases of peaches with a yeast antagonist, hot water and modified atmosphere packaging. Crop Protection 23(5): 431–435. https://doi.org/10.1016/j.cropro.2003.09.012

Koller M, Rayns F, Cubison S and Schmutz U. 2016. Guidelines for Experimental Practice in Organic Greenhouse Horticulture. BioGreenhouse COST Action FA 1105. http://dx.doi.org/10.18174/373581

Lastochkina O, Seifikalhor M, Aliniaeifard S, Baymiev A, Pusenkova L, Garipova S Kulabuhova D and Maksimov I. 2019. Bacillus spp: Efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants 8(4): 97. https://doi.org/10.3390/plants8040097

Lucas-Bautista JA, Bautista-Baños S, Ventura-Aguilar RI y Gómez-Ramírez M. 2019. Determinación de quitina en hongos postcosecha y de quitinasas en frutos de papaya ¨Maradol¨. Revista Mexicana de Fitopatología 37 (No. Esp. 1): 1-7. https://doi.org/10.18781/R.MEX.FIT.1902-3.

Liu J, Sui Y, Wisniewski M, Droby S and Liu Y. 2013. Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology 167(2): 153–160. https://doi.org/10.1016/j.ijfoodmicro.2013.09.004

MINAGRICULTURA. 2018. Mango. https://www.agronet.gov.co/Documents/13-MANGO_2017.pdf (Consulta diciembre, 2020).

Moreno CA, Zapata JA, Díaz A and Cotes AM. 2012. Selection of a Pichia onychis isolate for biological control of Botrytis cinerea based on its eco-physiological characteristics. IOBC-WPRS Bulletin 78(2):229-233.

Naureen Z, Rehman NU, Hussain H, Hussain J, Gilani SA, Al Housni SK, Mabood F, Khan AL, Farooq S, Abbas G and Harrasi AA. 2017. Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Frontiers in Microbiology (8):1477. https://doi.org/10.3389/fmicb.2017.01477

Perez M, Contreras L, Garnica N, Fernández-Zenoff M, Farías M, Sepulveda M, Ramallo J and Dib J. 2016. Native killer yeasts as biocontrol agents of postharvest fungal diseases in lemons. PLoS ONE 11(10): 1–21. https://doi.org/10.1371/journal.pone.0165590

Prusky D, Alkan N, Mengiste T and Fluhr R. 2013. Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annual Review of Phytopathology 51(1): 155–176. https://doi.org/10.1146/annurevphyto-082712-102349

Rungjindamai N. 2016. Isolation and evaluation of biocontrol agents in controlling anthracnose disease of mango in Thailand. Journal of Plant Protection Research 56(3): 306–311. https://doi.org/10.1515/jppr-2016-0034

Schirra M, D?hallewin G, Ben?yehoshua S and Fallik E. 2000. Host–pathogen interaction modulated by heat treatment. Postharvest Biology and Technology 21(1): 71–85. https://doi.org/10.1016/S0925-5214(00)00166-6

Trinidad-Ángel E, Ascencio-Valle FDJ, Ulloa OA, Ramírez-Ramírez OC, Ragazzo-Sánchez JA, Calderón-Santoyo M and Bautista PU. 2017. Identificación y caracterización de Colletotrichum spp. causante de antracnosis en aguacate de Nayarit, México. Revista Mexicana de Ciencias Agrícolas (19):3953-3964. https://doi.org/10.29312/remexca.v0i19.664

Usall J, Ippolito A, Sisquella M and Neri F. 2016. Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology (122): 30–40. https://doi.org/10.1016/j.postharvbio.2016.05.002

Vilaplana R, Pazmiño L and Valencia-Chamorro S. 2018. Control of anthracnose, caused by Colletotrichum musae, on postharvest organic banana by thyme oil. Postharvest Biology and Technology (138): 56–63. https://doi.org/10.1016/j.postharvbio.2017.12.008

Zapata J, Acosta C, Díaz A, Villamizar L and Cotes AM. 2011. Characterization of Rhodotorula glutinis and Pichia onychis isolates with potential as biopesticides for controlling Botrytis cinerea. Acta Horticulturae (905): 155–160. https://doi.org/10.17660/actahortic.2011.905.16

Zapata J and Cotes AM. 2013. Eficacia de dos prototipos de bioplaguicida a base de Rhodotorula glutinis cepa LvCo7 y un bioplaguicida a base de Trichoderma koningiopsis cepa Th003 en el control de B. cinerea en cultivos de mora. Pp. 73–79. En: Zapata, J. (Ed.), Desarrollo de prototipos de bioplaguicida a base de Rhodotorula glutinis LvCo7 para el control de Botrytis cinerea en cultivos de mora. Corporación Colombiana de Investigación Agropecuaria, Corpoica, Produmedios 79p. http://hdl.handle. net/20.500.12324/13072

Zhang H, Komla G, Castoria R, Tibiru M and Yang Q. 2017 Augmentation of biocontrol agents with physical methods against postharvest diseases of fruits and vegetables. Trends in Food Science & Technology (69): 36–45. https://doi.org/10.1016/j.tifs.2017.08.020

Zhang H, Ma L, Turner M, Xu H, Zheng X, Dong Y and Jiang S. 2010. Salicylic acid enhances biocontrol efficacy of Rhodotorula glutinis against postharvest Rhizopus rot of strawberries and the possible mechanisms involved. Food Chemistry 122(3): 577–583. https://doi.org/10.1016/j.foodchem.2010.03.013

Zhang H, Wang L, Dong Y, Jiang S, Zhang H and Zheng X. 2008. Control of postharvest pear diseases using Rhodotorula glutinis and its effects on postharvest quality parameters. International Journal of Food Microbiology 126(1–2): 167–171. https://doi.org/10.1016/j.ijfoodmicro.2008.05.018




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2102-1

Refbacks

  • There are currently no refbacks.