Efficacy of microbial antagonists and chitin in the control of Colletotrichum gloeosporioides in postharvest of mango cv. Azúcar
Abstract
Keywords
Full Text:
PDFReferences
Alvarado JR y Moreno LA. 2012. Acuerdo de competitividad cadena productiva del mango en Colombia. https://sioc.minagricultura.gov.co/Mango/Normatividad/004%20-%20D.C.%20-%20Acuerdo%20Competitividad%20Cadena%20Mango.pdf. (Consulta, marzo 2021).
Arauz L. 2000. Mango anthracnose: Economic impact and current options for integrated management. Plant Disease 84(6): 600–611. https://doi.org/10.1094/PDIS.2000.84.6.600
Asmar S. 2021. Productores de mango del Magdalena recibieron luz verde para exportar hacia Europa. Agronegocios.https://www.agronegocios.co/agricultura/productores-demango-del-magdalena-recibieron-luz-verde-para-exportar-hacia-europa-3146069. (Consulta, marzo 2021).
Ban Z, Wei W, Yang X, Feng J, Guan J and Li L. 2015. Combination of heat treatment and chitosan coating to improve postharvest quality of wolfberry (Lycium barbarum). International Journal of Food Science and Technology 50(4):1019–1025. https://doi.org/10.1111/ijfs.12734
Bautista-Baños S, Hernández-Lauzardo AN, Velázquez-Del Valle MG, Hernández-López M, Ait Barka E, Bosquez-Molina E and Wilson CL. 2006. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection 25(2): 108–118. https://doi.org/10.1016/j.cropro.2005.03.010
Bautista-Rosales P, Calderon-Santoyo M, Servín-Villegas R, Ochoa-Álvarez N, Vázquez-Juárez R and Ragazzo-Sánchez J. 2014. Biocontrol action mechanisms of Cryptococcus laurentii on Colletotrichum gloeosporioides of mango. Crop Protection (65): 194–201. https://doi.org/10.1016/j.cropro.2014.07.019
Calvente V, Benuzzi D and de Tosetti M. 1999. Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. International Biodeterioration and Bioegradation 43(4): 167–172. https://doi.org/10.1016/S0964-8305(99)00046-3
Chechi A, Stahlecker J, Dowling ME and Schnabel G. 2019. Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pesticide Biochemistry and Physiology (158): 18–24. https://doi.org/10.1016/j.pestbp.2019.04.002
Corrales-Bernal A, Maldonado ME, Urango LA, Franco MC and Rojano BA. 2014. Mango de azúcar (Mangifera indica), variedad de Colombia: características antioxidantes, nutricionales y sensoriales. Revista chilena de nutrición 41(3): 312-318. https://dx.doi.org/10.4067/S0717-75182014000300013
Carrillo-Fasio JA, García-Estrada RS, Muy-Rangel MD, Sañudo-Barajas A, Márquez-Zequera I, Allende-Molar R. 2005. Control Biológico de Antracnosis [Colletotrichum gloeosporioides (Penz.) Penz. y Sacc.] y su Efecto en la Calidad Poscosecha del Mango (Mangifera indica L.) en Sinaloa, México. Revista Mexicana de Fitopatología 23: 24-32. https://www.redalyc.org/pdf/612/61223104.pdf
Corkidi G, Balderas-Ruíz KA, Taboada B, Serrano-Carreón L and Galindo E. 2006. Assessing mango anthracnose using a new three-dimensional image-analysis technique to quantify lesions on fruit. Plant Pathology 55(2): 250–257. https://doi.org/10.1111/j.1365-3059.2005.01321.x
Díaz-García A, García-Riaño J and Zapata-Narváez J. 2015. Improvement of sporulation conditions of a new strain of Bacillus amyloliquefaciens in liquid fermentation. Advances in Bioscience and Biotechnology 6 (4): 302-310. http://dx.doi.org/10.4236/abb.2015.64029
Fallik E. 2004. Prestorage hot water treatments (immersion, rinsing and brushing). Postharvest Biology and Technology 32(2): 125–134. https://doi.org/10.1016/j.postharvbio.2003.10.005
Fallik E, Grinberg S, Alkalai S and Lurie S. 1996. The effectiveness of postharvest hot water dipping on the control of grey and black moulds in sweet red pepper (Capsicum annuum). Plant Pathology 45(4): 644–649. https://doi.org/10.1046/j.1365-3059.1996.d01-175.x
Gámez RM, Rodríguez F, Bernal JF, Agarwala R, Landsman D and Mariño-Ramírez L. 2015. Genome sequence of the Banana plant growth-promoting rhizobacterium Bacillus amyloliquefaciens BS006. Genome announcements 3(6): e01391-15. https://doi.org/10.1128/genomeA.01391-15
Kamle M and Kumar P. 2016. Colletotrichum gloeosporioides: Pathogen of anthracnose disease in Mango (Mangifera indica L.). In: Kumar P, Kumar GV, Kumar TA and Kamle M (Ed.). Current Trends in Plant Disease Diagnostics and Management Practices, Fungal Biology. 207–219. https://doi.org/10.1007/978-3-319-27312-9_9
Karabulut O and Baykal N. 2004. Integrated control of postharvest diseases of peaches with a yeast antagonist, hot water and modified atmosphere packaging. Crop Protection 23(5): 431–435. https://doi.org/10.1016/j.cropro.2003.09.012
Koller M, Rayns F, Cubison S and Schmutz U. 2016. Guidelines for Experimental Practice in Organic Greenhouse Horticulture. BioGreenhouse COST Action FA 1105. http://dx.doi.org/10.18174/373581
Lastochkina O, Seifikalhor M, Aliniaeifard S, Baymiev A, Pusenkova L, Garipova S Kulabuhova D and Maksimov I. 2019. Bacillus spp: Efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants 8(4): 97. https://doi.org/10.3390/plants8040097
Lucas-Bautista JA, Bautista-Baños S, Ventura-Aguilar RI y Gómez-Ramírez M. 2019. Determinación de quitina en hongos postcosecha y de quitinasas en frutos de papaya ¨Maradol¨. Revista Mexicana de Fitopatología 37 (No. Esp. 1): 1-7. https://doi.org/10.18781/R.MEX.FIT.1902-3.
Liu J, Sui Y, Wisniewski M, Droby S and Liu Y. 2013. Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology 167(2): 153–160. https://doi.org/10.1016/j.ijfoodmicro.2013.09.004
MINAGRICULTURA. 2018. Mango. https://www.agronet.gov.co/Documents/13-MANGO_2017.pdf (Consulta diciembre, 2020).
Moreno CA, Zapata JA, Díaz A and Cotes AM. 2012. Selection of a Pichia onychis isolate for biological control of Botrytis cinerea based on its eco-physiological characteristics. IOBC-WPRS Bulletin 78(2):229-233.
Naureen Z, Rehman NU, Hussain H, Hussain J, Gilani SA, Al Housni SK, Mabood F, Khan AL, Farooq S, Abbas G and Harrasi AA. 2017. Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Frontiers in Microbiology (8):1477. https://doi.org/10.3389/fmicb.2017.01477
Perez M, Contreras L, Garnica N, Fernández-Zenoff M, Farías M, Sepulveda M, Ramallo J and Dib J. 2016. Native killer yeasts as biocontrol agents of postharvest fungal diseases in lemons. PLoS ONE 11(10): 1–21. https://doi.org/10.1371/journal.pone.0165590
Prusky D, Alkan N, Mengiste T and Fluhr R. 2013. Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annual Review of Phytopathology 51(1): 155–176. https://doi.org/10.1146/annurevphyto-082712-102349
Rungjindamai N. 2016. Isolation and evaluation of biocontrol agents in controlling anthracnose disease of mango in Thailand. Journal of Plant Protection Research 56(3): 306–311. https://doi.org/10.1515/jppr-2016-0034
Schirra M, D?hallewin G, Ben?yehoshua S and Fallik E. 2000. Host–pathogen interaction modulated by heat treatment. Postharvest Biology and Technology 21(1): 71–85. https://doi.org/10.1016/S0925-5214(00)00166-6
Trinidad-Ángel E, Ascencio-Valle FDJ, Ulloa OA, Ramírez-Ramírez OC, Ragazzo-Sánchez JA, Calderón-Santoyo M and Bautista PU. 2017. Identificación y caracterización de Colletotrichum spp. causante de antracnosis en aguacate de Nayarit, México. Revista Mexicana de Ciencias Agrícolas (19):3953-3964. https://doi.org/10.29312/remexca.v0i19.664
Usall J, Ippolito A, Sisquella M and Neri F. 2016. Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology (122): 30–40. https://doi.org/10.1016/j.postharvbio.2016.05.002
Vilaplana R, Pazmiño L and Valencia-Chamorro S. 2018. Control of anthracnose, caused by Colletotrichum musae, on postharvest organic banana by thyme oil. Postharvest Biology and Technology (138): 56–63. https://doi.org/10.1016/j.postharvbio.2017.12.008
Zapata J, Acosta C, Díaz A, Villamizar L and Cotes AM. 2011. Characterization of Rhodotorula glutinis and Pichia onychis isolates with potential as biopesticides for controlling Botrytis cinerea. Acta Horticulturae (905): 155–160. https://doi.org/10.17660/actahortic.2011.905.16
Zapata J and Cotes AM. 2013. Eficacia de dos prototipos de bioplaguicida a base de Rhodotorula glutinis cepa LvCo7 y un bioplaguicida a base de Trichoderma koningiopsis cepa Th003 en el control de B. cinerea en cultivos de mora. Pp. 73–79. En: Zapata, J. (Ed.), Desarrollo de prototipos de bioplaguicida a base de Rhodotorula glutinis LvCo7 para el control de Botrytis cinerea en cultivos de mora. Corporación Colombiana de Investigación Agropecuaria, Corpoica, Produmedios 79p. http://hdl.handle. net/20.500.12324/13072
Zhang H, Komla G, Castoria R, Tibiru M and Yang Q. 2017 Augmentation of biocontrol agents with physical methods against postharvest diseases of fruits and vegetables. Trends in Food Science & Technology (69): 36–45. https://doi.org/10.1016/j.tifs.2017.08.020
Zhang H, Ma L, Turner M, Xu H, Zheng X, Dong Y and Jiang S. 2010. Salicylic acid enhances biocontrol efficacy of Rhodotorula glutinis against postharvest Rhizopus rot of strawberries and the possible mechanisms involved. Food Chemistry 122(3): 577–583. https://doi.org/10.1016/j.foodchem.2010.03.013
Zhang H, Wang L, Dong Y, Jiang S, Zhang H and Zheng X. 2008. Control of postharvest pear diseases using Rhodotorula glutinis and its effects on postharvest quality parameters. International Journal of Food Microbiology 126(1–2): 167–171. https://doi.org/10.1016/j.ijfoodmicro.2008.05.018
DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2102-1
Refbacks
- There are currently no refbacks.