In vitro antagonist biocontrol of Fusarium oxysporum and Dickeya chrysanthemi

Sarahi Rubio-Tinajero, Eduardo Osorio-Hernández, Benigno Estrada-Drouaillet, José Hugo Tomás Silva-Espinosa, Ma. De Lourdes Rodríguez-Mejía, Raúl Arnulfo Nava-Juárez

Abstract


The objective was to evaluate the antagonistic effect in vitro of native strains of Trichoderma asperellum, Trichoderma harzianum and two isolates of Bacillus spp. against Fusarium oxysporum and Dickeya chrysanthemi. Bacillus, isolated from soil samples of Aloe vera plantations, was morphologically identified and a modified dual culture confrontation was carried out, placing the F. oxysporum in the center of the Petri dish and Bacillus in the four cardinal points; it was arranged under a completely randomized experimental design with five repetitions, the variables registered were percentage of antagonism, inhibition halo and concentration of conidia. For Trichoderma they were confronted against F. oxysporum and D. chrysanthemi with a dual confrontation, a percentage of inhibition and antagonism classification were determined. In the confrontation of T. asperellum it obtained a percentage of inhibition of 70.5% against F. oxysporum and 41.9% against D. chrysanthemi. Regarding the inhibition halos of Bacillus (B5 and B4), they obtained 4 mm. In the conidia concentration B5 showed 1.3, B4 2.6 and the control 12.6 spores per dilution. Trichoderma and Bacillus represent a viable alternative for the control of F. oxysporum and D. chrysanthemi.

Keywords


Biological control; fungus; bacteria; T. asperellum; T. harzianum; Bacillus spp

Full Text:

PDF

References


Álvarez MG, Rodríguez RG y Flores AM. 2012. Efectos de la certificación sobre la competitividad de la industria de la sábila en México. Revista Mexicana de Agronegocios 30: 921-929. https://www.redalyc.org/pdf/141/14123097013.pdf

Andrade-Hoyos P, Luna-Cruz A, Osorio-Hernández E, Molina-Gayosso E, Landero-Valenzuela N y Barrales-Cureño HJ. 2019. Antagonismo de Trichoderma spp. vs hongos asociados a la marchitez de chile. Revista mexicana de ciencias agrícolas 10(6): 1259-1272. https://doi.org/10.29312/remexca.v10i6.1326

Astorga-Quirós K, Meneses-Montero K, Zúñiga VC, Brenes-Madriz J y Rivera-Méndez W. 2014. Evaluación del antagonismo de Trichoderma sp. y Bacillus subtilis contra tres patógenos del ajo. Tecnología en Marcha 27: 82-91. https://doi.org/10.18845/tm.v27i2.1929

Ávila NDD, Velasco CR, Luna GE, Campos OJC, Cambero ACB and Estrada-Virgen MO. 2020. Identification and antagonic activity in vitro isolation of bacteria against fungi of agricultural important. Revista Bio Ciencias 7: e803. https://doi.org/10.15741/revbio.07.e803

Bell DK, Wells HD and Markham CR. 1982. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Ecology and Epidemiology 72: 379-382. https://doi.org/10.1094/Phyto-72-379

Calvo P y Zúñiga D. 2010. Caracterización fisiológica de cepas de Bacillus spp. aisladas de la rizósfera de papa (Solanum tuberosum). Ecología Aplicada 9(1): 31-39. http://dx.doi.org/10.21704/rea.v9i1-2.393

Castro ÁE, Hernández CFD, Gallegos MG, Ochoa FYM and Castillo RF. 2019. Biocontrol of Rhizoctonia solani and Fusarium oxysporum with endophytic bacteria formulation and its effect in the growth promotion in bean crop. Revista Bio Ciencias 6: 1-13. https://doi.org/10.15741/revbio.06.e416

Corrales LC, Sánchez LC, Cuervo J, Bautista D, González L y Guevara M. 2011. Evaluación del efecto biocontrolador de Bacillus spp. frente a Fusarium spp. bajo condiciones de invernadero en Rosmarinus officinalis L. NOVA Publicación Científica en Ciencias Biomédicas 8(13): 63-75. https://doi.org/10.22490/24629448.440

Coban HB. 2020. Organic acids as antimicrobial food agents: Applications and microbial productions. Bioprocess Biosyst 43(4): 569–591. https://doi.org/10.1007/s00449-019-02256-w

Cochrane SA and Vederas JC. 2016. Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Medicinal Research Reviews 36(1): 4-31. https://doi.org/10.1002/med.21321

Fiorentino N, Rosa AD, Gioia L, Senatore MD, Visconti L, Ottaiano V, Cenvinzo E, Cozzolino Y, Rouphael S, Woo MM and Fagnano M. 2016. Effects of Trichoderma on growth and nitrogen uptake of lettuce (Lactuca sativa L.). XLV Convegno della Società Italiana di Agronomia 134-135. https://www.researchgate.net/publication/309174868_Effects_of_Trichoderma_on_Growth_and_Nitrogen_Uptake_of_Lettuce_Lactuca_sativa_L

García-Espejo C, Mamani-Mamani N, Mercedes M, Chávez-Lizárraga GA and Álvarez-Aliaga MT. 2016. Evaluación de la actividad enzimática del Trichoderma inhamatum (BOL-12 QD) como possible biocontrolador. Journal of the Selva Andina Research Society 7(1): 20-32. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2072-92942016000100004

Gerayeli N, Baghaee-Ravari S and Tarighi S. 2018. Evaluation of the antagonistic potential of Bacillus strains against Pectobacterium carotovorum subsp. carotovorum and their role in the induction of resistance to potato soft rot infection. European Journal of Phytopathology 150(4): 1049-1063. https://doi.org/10.1007/s10658-017-1344-0

Jiménez CHE. 2015. Identificación de fitopatógenos asociados a las principales enfermedades del cultivo de sábila en los municipios de agua de Dios y Ricaurte (Cundinamarca). Revista Tecnología y Productividad Girardot, Regional Cundinamarca 1(1): 35-50. http://revistas.sena.edu.co/index.php/rtyp/article/view/244/269

Li YT, Hwang SG, Huang YM and Huang CH. 2018. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protection 110: 275-282. https://doi.org/10.1016/j.cropro.2017.03.021

Mannai S, Horrigue-Raouani N and Boughalleb-MHamdi N. 2018. Effect of six fungicides against Fusarium oxysporum and F. solani associated with peach seedlings decline in Tunisian nurseries. Annual Research & Review in Biology 26(4): 1-11 https://doi.org/10.9734/ARRB/2018/41295

Martínez-Martínez TO, Guerrero-Aguilar BZ, Pecina-Quintero B, Rivas-Valencia P, González-Pérez E y Angeles-Núñez JG. 2020. Antagonismo de Trichoderma harzianum contra la fusariosis del garbanzo y su efecto biofertilizante. Revista Mexicana de Ciencias Agrícolas 11(5): 1135-1147. https://doi.org/10.29312/remexca.v11i5.2325

Miljakovi? D, Marinkovi? J and Baleševi?-Tubi? S. 2020. The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorganisms 8(7): 1037. https://doi.org/10.3390/microorganisms8071037

Miguel-Ferrer L, Romero-Arenas O, Andrade-Hoyos P, Sánchez-Morales P, Rivera-Tapia JA y Fernández-Pavía SP. 2021. Actividad antifúngica de Trichoderma harzianum y T. koningiopsis contra Fusarium solani asociado en la germinación y vigor de plántulas de chile Miahuateco. Revista Mexicana de Fitopatología 39(2): 228-247. http://dx.doi.org/10.18781/R.MEX.FIT.2101-5

Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P and Hens L. 2016. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in public health 148: 1-8 https://doi.org/10.3389/fpubh.2016.00148

Pappas ML, Baptista P, Broufas DG, Dalakouras A, Djobbi W, Flors V, Msaad GM, Khayi S, Mentag R, Pastor V, Pereira JA, Sánchez-Bel P and Papadopoulou K. 2020. Biological and molecular control tools in plant defense. In: Mérillon JM and Ramawat KG (eds) Plant Defense: Biological Control. Progress in biological control 22: 3-43. https://doi.org/10.1007/978-3-030-51034-3_1

Reinoso PY, Casadesús LR, García AS, Gutiérrez P y Álvarez-Rivera VP. 2006. Aislamiento, selección e identificación de bacterias del género Bacillus antagonistas de Pectobacterium carotovorum. Fitosanidad 10(3): 187-191. http://www.redalyc.org/pdf/2091/209116108001.pdf

Ribeiro MS, Graciano de PR, Voltan AR, de Castro RG, Carraro CB, de Assis LJ, Stecca SA, Goldman GH, Silva RN, Ulhoa CJ and Monteiro VN. 2019. Endo-?-1,3-glucanase (GH16 Family) from Trichoderma harzianum Participates in Cell Wall Biogenesis but Is Not Essential for Antagonism Against Plant Pathogens. Biomolecules 9(12): 781. https://doi.org/10.3390/biom9120781

Rodríguez-García D y Wang-Wong A. 2020. Efectividad a nivel in vitro de Trichoderma spp. nativos e importados contra Fusarium oxysporum. Agronomía Costarricense 44(2): 2 https://doi.org/10.15517/rac.v44i2.43096

Rubio TS, Pérez SCA y Osorio HE. 2020. Sábila (Aloe vera): propiedades, usos y problemas. Ciencia UANL 23(99): 1-6. http://cienciauanl.uanl.mx/?p=9681

Sánchez AD, Barrera V, Reybet GE and Sosa MC. 2015. Biocontrol with Trichoderma spp. of Fusarium oxysporum causal of “seedling disease” in pre and post emergence in onion. Magazine of the Faculty of Agronomy La Plata 114(1): 61-70 http://revista.agro.unlp.edu.ar/index.php/revagro/article/view/396/178

Sánchez-León GL and Bustos A. 2020. Potencial antagónico de cepas de Trichoderma spp. contra patógenos foliares de árboles en parques de los Cerros Orientales de Bogotá. Revista Facultad De Ciencias Básicas 15(2): 107-115. https://doi.org/10.18359/rfcb.3899

Schaad NW, Jonas JB and Chun W. 2001. Laboratory Guide for identification of plant pathogenic bacteria. Third Edition. Ed APS PRESS Minnesota U.S.A. 373 p. https://doi.org/10.1046/j.1365-3059.2001.00635.x

Sneha SG and Anuradha SN. 2017. Evaluation of quorum quenching Bacillus spp. for their biocontrol traits against Pectobacterium carotovorum subsp. carotovorum causing soft rot. Biocatalysis and Agricultural Biotechnology 9: 48-57. https://doi.org/10.1016/j.bcab.2016.11.004.

Solano-Báez AR, Leyva-Mir SG, Núñez-Pastrana R, Quezada-Salinas A and Márquez-Liconaet G. 2021. Biocontrol del ahogamiento de plántulas de calabacita con Bacillus subtilis QST 713. Revista Mexicana de Fitopatología 39(2): 302-313. http://dx.doi.org/10.18781/R.MEX.FIT.2101-2




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2104-1

Refbacks

  • There are currently no refbacks.