Web-based epidemiological surveillance systems and applications to coffee rust disease

Gustavo Mora-Aguilera, Gerardo Acevedo-Sánchez, Eduardo Guzmán-Hernández, Oscar Eder Flores-Colorado, Juan José Coria-Contreras, Coral Mendoza-Ramos, Verónica Inés Martínez-Bustamante, Abel López-Buenfil, Rigoberto González-Gómez, Miguel Ángel Javier-López

Abstract


The advancement of digital technology has made it possible to conceive automated Epidemiological Surveillance Systems (ESS) with a holistic-systemic approach allowing effective operation, management, and processing of phytosanitary data for fast decision-making applied to regional prevention and pest management. This surveillance type focuses on plant health, overcoming the reductionist pest vision of the conventional normative surveillance. An ESS implies the precise definition of the regional framework, objectives, pest(s) in wide-sense, human/financial resources, regulatory context, support research planning, operational structure, and innovation models. These elements determine the precision, frequency, and type of sampling and monitoring and the selection of variables related to a novel epidemiological system. In contrast to the normative surveillance, a systemic ESS has descriptive and risk forecasting capabilities, including early warnings, based on spatial and temporal analyses. A web-based ESS assures a flexible-dynamic generation of reports and automated analysis. An ESS operated on web platforms, emphasizing open source software and tools, can be hosted on generic or dedicated servers for metadata storage configured with Linux / Apache technologies with 24/7 (h day-1) functional capabilities. Open source tools include MySQL / MariaDB and other systems as database managers; PHP / Node.js, and JavaScript, Ajax, HTML5 and CSS as web design base ‘back-end’ and ‘front-end’ programs, respectively. This review focuses on principles, conceptual attributes, general methodological approaches, and objectives of web-based ESS. An overview is presented with an ESS developed in Mexico for coffee plantations (Coffea spp.), which allowed the surveillance of 19 pests, nine under quarantine status, through the generation, management, and analysis of 87.4 million climatic data and 15.7 million epidemiological records over 2013-2019.

Keywords


Hemileia vastatrix; Coffea arabica; Early warning; Prevention

Full Text:

PDF

References


Aanensen DM, Huntley DM, Feil EJ, al-Own FA and Spratt BG. 2009. EpiCollect: Linking smartphones to web applications for epidemiology, ecology and community data collection. Plos one 4(9): e6968. https://doi.org/10.1371/journal.pone.0006968

Acevedo-Sánchez G, Santana-Peñaloza B, López-Bautista V, Martínez-Bustamante V, Coria-Contreras J, Mendoza- Ramos C, Jiménez-González L y Mora-Aguilera G. 2017. Criterios epidemiológicos para implementar una red de monitoreo de enfermedades causadas por Fusarium spp. en regiones agaveras de Jalisco. Revista Mexicana de Fitopatología 35S: 176-177. http://rmf.smf.org.mx/suplemento/Suplemento352017.html

Acevedo-Sánchez G y Mora-Aguilera G. 2016. Desarrollo de REG-N Café v1.0 para determinar n-sitios de monitoreo muestreo regional de roya del cafeto en México usando criterios epidemiológicos ponderados. In. 49º Congresso Brasileiro de Fitopatologia. 29 agosto–01 septiembre. Alagoas, Maceio, Brasil.

Acevedo-Sánchez G, Mora-Aguilera G, Coria-Contreras JJ, López-Muratalla Y, González-Gómez R y López-Buenfil A. 2015. Vulnerabilidad epidemiológica, productiva y socioeconómica en la cadena productiva del cafeto en Chiapas, Veracruz y Puebla. Revista Mexicana de Fitopatología 33S: 120. http://rmf.smf.org.mx/suplemento/Suplemento332015.html

Carvajal-Yepes M, Cardwell K, Nelson A, Garrett KA, Giovani B, Saunders DGO, Kamoun S, Legg JP, Verdier V, Lessel J, Neher RA, Day R, Pardey P, Gullino ML, Records AR, Bextine B, Leach JE, Staiger S and Tohme J. 2019. A global surveillance system for crop diseases. Science 364 (6447): 1237-1239. https://doi.org/10.1126/science.aaw1572

Casacuberta D. 2013. Innovación, big data y epidemiología. Revista Iberoamericana de Argumentación 7: 1-12. https://revistas.uam.es/ria/article/view/8176/8515

Chiavegatto ADP. 2015. Uso de big data em saúde no Brasil: perspectivas para um futuro próximo. Epidemiologia e Serviços de Saúde 24(2): 325-332. https://doi.org/10.5123/S1679-49742015000200015

Coakley SM, McDaniel LR and Shaner G. 1985. Model for predicting severity of Septoria tritici blotch on winter wheat. Phytopathology 75: 1245-1251. https://www.apsnet.org/publications/phytopathology/backissues/Documents/1985Articles/Phyto75n11_1245.PDF

Coria-Contreras JJ, Mora-Aguilera G, Yañez-Morales MJ, Acevedo-Sánchez G, Santana-Peñaloza B, Mendoza-Ramos C, Jiménez-González L, Martínez-Bustamante VI, García-Martínez DC and Rubio-Cortés R. 2019. Applied regional epidemiology to inductive characterization and forecasting of blue agave gray spot (Cercospora agavicola) in Jalisco, Mexico. Mexican Journal of Phytopathology 37(1): 71-94. http://doi.org/10.18781/R.MEX.FIT.1809-4

Coria-Contreras JJ, Acevedo-Sánchez G, Mendoza-Ramos C, Jiménez-González L y Mora-Aguilera G. 2015a. APLI-K v1.0: Sistema automatizado para la planeación de aplicación de productos químicos contra roya del cafeto (Hemileia vastatrix). Revista Mexicana de Fitopatología 33S: 121. https://www.smf.org.mx/rmf/suplemento/docs/Volumen332015/Suplemento332015FULL.pdf

Coria-Contreras JJ, Acevedo-Sánchez G, Mora-Aguilera G y Martínez-Bolaños M. 2015b. Modelos de pronóstico de ocurrencia regional de la roya del cafeto (Hemileia vastatrix) en el Soconusco Chiapas. Revista Mexicana de Fitopatología 33S: 121. https://www.smf.org.mx/rmf/suplemento/docs/Volumen332015/Suplemento332015FULL.pdf

De Wolf ED and Isard SA. 2007. Disease cycle approach to plant disease prediction. Annual Review of Phytopathology 45: 203-220. https://doi.org/10.1146/annurev.phyto.44.070505.143329

Drew DA, Nguyen LH, Steves CJ, Menni C, Freydin M, Varsavsky T, Sudre CH, Cardoso MJ, Ourselin S, Wolf J, Spector TD, Chan AT and Consortium C. 2020. Rapid implementation of mobile technology for real-time epidemiology of COVID-19. Science 368: 1362-1367. https://doi.org/10.1126/science.abc0473

Firanj Sremac A, Lali? B, Mar?i? M and Deki? L. 2018. Toward a weather-based forecasting system for fire blight and downy mildew. Atmosphere 9(12): 1-17. https://doi.org/10.3390/atmos9120484

Flores-Sánchez JL, Mora-Aguilera G, Loeza-Kukc E, López- Arroyo JI, Gutiérrez-Espinosa MA, Velázquez-Monreal JJ, Domínguez-Monge S, Bassanezi RB, Acevedo-Sánchez G and Robles-García P. 2017. Diffusion model for describing the regional spread of Huanlongbing from first reported outbreaks and basing an area wide disease management strategy. Plant Disease 101: 1119-112. https://doi.org/10.1094/PDIS-04-16-0418-RE

Golhani K, Balasundram SK, Vadamalai G and Pradhan B. 2018. A review of neural networks in plant disease detection using hyperspectral data. Information Processing in Agriculture 5(3): 354-37. https://doi.org/10.1016/j.inpa.2018.05.002

Guzmán-Hernández E, Flores-Colorado O, Acevedo-Sánchez G, Mora-Aguilera G, López-Javier MA y González-Gómez R. 2017. Apps como herramientas de soporte epidemiológico aplicado a sistemas regionales de vigilancia epidemiológica. Revista Mexicana de Fitopatología 35S: 184. https://www.smf.org.mx/rmf/suplemento/docs/Volumen352017/VOLUMEN_35_SUPLEMENTO_2017.pdf

Huber L and Gillespie TJ. 1992. Modeling leaf wetness in relation to plant disease epidemiology. Annual Review of Phytopathology 30: 553-577. https://www.annualreviews.org/doi/pdf/10.1146/annurev.py.30.090192.003005

Kang WS, Hong SS, Han YK, Kim KR, Kim SG and Park EW. 2010. A web-based information system for plant disease forecast based on weather data at high spatial resolution. The Plant Pathology Journal 26(1): 37-48. https://doi.org/10.5423/PPJ.2010.26.1.037

Kaundal R, Kapoor AS and Raghava GPS. 2006. Machine learning techniques in disease forecasting: a case study on rice blast prediction. BMC Bioinformatics 7:485. https://doi.org/10.1186/1471-2105-7-485

Kim HS, Do KS, Park JH, Kang WS, Lee YH and Park EW. 2020. Application of numerical weather prediction data to estimate infection risk of bacterial grain rot of rice in Korea. Plant Pathology Journal 36(1): 54-66. https://doi.org/10.5423/PPJ.OA.11.2019.0281

Krause RA, Massie LB and Hyre RA. 1975. Blitecast: a computer forecast of potato late blight. Plant Disease Reporter 59(2): 95-98. https://babel.hathitrust.org/cgi/pt?id=chi.23661187&view=1up&seq=112

Kuang W, Liu W, Ma Z and Wang H. 2012. Development of a web-based prediction system for wheat stripe rust. Pp. 324-335. In: 6th Computer and Computing Technologies in Agriculture (CCTA), Oct 2012, Zhangjiajie, China. https://hal.inria.fr/hal-01348115/document

López-Bautista V, Mora-Aguilera G, Gutiérrez-Espinosa MA, Mendoza-Ramos C, Martínez-Bustamante VI, Coria-Contreras JJ, Acevedo-Sánchez G and Santana-Peñaloza B. 2020. Morphological and molecular characterization of Fusarium spp. associated to the regional occurrence of wilt and dry bud rot in Agave tequilana. Mexican Journal of Phytopathology 38(1): 79-106. http://www.scielo.org.mx/scielo.php?pid=S0185-33092020000100105&script=sci_arttext&tlng=en

Ma J, Du K, Zheng F, Zhang L, Gong Z and Sun Z. 2018. A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network. Computers and Electronics in Agriculture 154: 18-24. https://doi.org/10.1016/j.compag.2018.08.048

Madden L, Pennypacker SP and MacNab AA. 1978. FAST, a forecast system for Alternaria solani on tomato. Phytopathology 68: 1354-1358. https://www.apsnet.org/publications/phytopathology/backissues/Documents/1978Articles/Phyto68n09_1354.pdf

Magarey RD and Isard SA. 2017. A Troubleshooting guide for mechanistic plant pest forecast models. Journal of Integrated Pest Management 8(1): 1-7 https://doi.org/10.1093/jipm/pmw015

Mendoza-Ramos C, Mora-Aguilera G, Coria-Contreras JJ, Santana-Peñaloza B, Acevedo-Sánchez G, Martínez-Bustamante V, Gutiérrez-Espinosa MA and Rubio-Cortés R. 2021. Fusarium spp. and inoculum load estimation associated to commercial Agave tequilana offsets at different regional epidemic inductivity levels. Mexican Journal of Phytopathology 39(1): 94-121. http://www.scielo.org.mx/pdf/rmfi/v39n1/2007-8080-rmfi-39-01-94-en.pdf

Mendoza-Ramos C, Jiménez-González L, Coria-Contreras JJ, Acevedo-Sánchez G y Mora-Aguilera G. 2015a. Comportamiento aerobiológico de esporas de Hemileia vastatrix en la región nororiental de Puebla-Veracruz. Revista Mexicana de Fitopatología 33S: 238. https://www.smf.org.mx/rmf/suplemento/docs/Volumen332015/Suplemento332015FULL.pdf

Mendoza-Ramos C, Jiménez-González LR, Coria-Contreras JJ, Acevedo-Sánchez G, Santana-Peñaloza B, Martínez-Bolaños M y Mora-Aguilera G. 2015b. Efecto de ingrediente activo y dosis en la esporulación y expansión de lesión de Hemileia vastatrix. Revista Mexicana de Fitopatología 33S: 135. https://www.smf.org.mx/rmf/suplemento/docs/Volumen332015/Suplemento332015FULL.pdf

Mora-Aguilera G, Cortez-Madrigal H and Acevedo-Sánchez G. 2017. Epidemiology of entomopathogens: Basis for rational use of microbial control of insects. Southwestern Entomologist 42(1): 153-169. https://doi.org/10.3958/059.042.0116

Mora-Aguilera G, Acevedo-Sánchez G, Guzmán-Hernández E, Coria-Contreras JJ, Mendoza-Ramos C, Jiménez-González L, Santana-Peñaloza B, González-Gómez R, López-Buenfil A, López-Javier M y Carranza P. 2016a. Criterios epidemiológicos de accionabilidad regional para control de la roya del cafeto en México. Revista Mexicana de Fitopatología 34S: 23. https://www.smf.org.mx/rmf/suplemento/docs/Volumen342016/Suplemento_34_2016.pdf

Mora-Aguilera G, Coria-Contreras JJ, Martínez-Bolaños M, Acevedo-Sánchez G y Santana-Peñaloza B. 2016b. Gradientes regionales de dispersión de la roya del cafeto (Hemileia vastatrix) en el Soconusco, Chiapas, México. In. 49º Congresso Brasileiro de Fitopatología. 29 agosto – 01 septiembre. Alagoas, Maceio, Brasil.

Mora-Aguilera G, Acevedo-Sánchez G, Coria-Contreras J, González-Gómez R, López-Buenfil A y Javier-López MA. 2015a. Alertas tempranas regionales para manejo de focos de roya del cafeto en México. Revista Mexicana de Fitopatología 33S: 64. http://rmf.smf.org.mx/suplemento/Suplemento332015.html

Mora-Aguilera G, Acevedo-Sánchez G, Coria-Contreras JJ, López-Muratalla Y, López-Buenfil A y González-Gómez R. 2015b. C@FE-RISK v1.0: Simulador de riesgos regionales fitosanitarios, epidemiológicos y productivos en la cadena productiva del café en México. Revista Mexicana de Fitopatología 33S: 119. http://rmf.smf.org.mx/suplemento/Suplemento332015.html

Mora-Aguilera G, Acevedo-Sánchez G, Calderón-Estrada G, Flores-Sánchez J, Domínguez-Monje S, Baker P and González-Gómez R. 2014a. Epidemiological considerations of climate change on tropical crops health. Mexican Journal of Phytopathology 32(2): 147-167. http://www.scielo.org.mx/scielo.php?pid=S0185-33092014000200147&script=sci_arttext&tlng=en

Mora-Aguilera G, Flores-Sánchez F, Acevedo-Sánchez G, Domínguez-Monge S, Oropeza-Salin C, Flores-Olivas A, González-Gómez R and Robles-García P. 2014b. Epidemiological surveillance and current status of coconut lethal yellowing, potato purple top and citrus huanglongbing (HLB) in Mexico. Mexican Journal of Phytopathology 32(2): 120-131. https://www.researchgate.net/publication/300533174_Epidemiological_Surveillance_and_Current_Status_of_Coconut_Lethal_Yellowing_Potato_Purple_Top_and_Citrus_Huanglongbing_HLB_in_Mexico

Mora-Aguilera G, Robles-García P, López-Arroyo JL, Flores-Sánchez J, Acevedo-Sánchez G, Domínguez-Monge D and González-Gómez R. 2014c. Current situation and perspectives in management of citrus HLB. Mexican Journal of Phytopathology 32(2): 108-119. https://www.smf.org.mx/rmf/Vol3222014/AR/32-2_03.pdf

Mora-Aguilera G, Acevedo-Sánchez G, Domínguez-Monge D, Coria-Contreras JJ, Hernández-Hernández E, González-Gómez R, López-Buenfil A, Sánchez-Anguiano H, García-Feria J, Trujillo-Arriaga J, López-Pérez E, Méndez-Ramos A, Matuz-Conde J and Martínez-Bolaños M. 2014d. Epidemiological surveillance system for coffee rust disease (Hemileia vastatrix) in Mexico: A regional approach. In: The 25th International Conference on Coffee Science. 8-13 Septiembre. Armenia, Colombia. 1-6pp.https://www.researchgate.net/publication/306347540_Epidemiological_Surveillance_System_for_Coffee_Rust_Disease_Hemileia_vastatrix_in_Mexico_A_Regional_Approach

Mora-Aguilera G, Acevedo-Sánchez G, Flores-Sánchez J, Hernández R, González-Gómez R and Robles-García P. 2014e. Regional Epidemiology: A new frontier and challenge in plant pathology. In: Abstracts 47º Congresso Brasileiro de Fitopatología “Desafios Futuros”. 17-22 agosto. Londrina, Paraná, Brasil. https://www.researchgate.net/publication/301204091_Regional_Epidemiology_A_new_frontier_and_challenge_in_plant_pathology

Moschini RC, Carranza MR and Carmona MA. 2004. Meteorological-based predictions of wheat head blight epidemic in the southern Argentinean pampas region. Cereal Research Communications 32: 45–52. https://doi.org/10.1007/BF03543279

Newlands NK. 2018. Model-based forecasting of agricultural crop disease risk at the regional scale, integrating airborne inoculum, environmental, and satellite-based monitoring data. Frontiers in Environmental Science 6: 1-16. https://doi.org/10.3389/fenvs.2018.00063

Park EW, Seem RC, Gadoury DM and Pearson RC. 1997. DMCAST: a prediction model for grape downy mildew development. Viticulticulture and Enological Science 52: 182–89 https://www.researchgate.net/publication/258219975_DMCast_a_prediction_model_for_grape_downy_mildew_development

Parnell S, van den Bosch F, Gottwald T and Gilligan CA. 2017. Surveillance to inform control of emerging plant diseases: An epidemiological perspective. Annual Review of Phytopathology 55: 591–610. https://doi.org/10.1146/annurevphyto-080516-035334

Pethybridge SJ and Nelson SC. 2018. Estimate a new ipad application for assessment of plant disease severity using phothographic standard area diagrams. Plant Disease 102: 276-281. https://doi.org/10.1094/PDIS-07-17-1094-SR Pethybridge SJ and Nelson SC. 2015. Leaf Doctor: A new portable application for quantifying plant disease severity. Plant Disease 99: 1310-1316. http://dx.doi.org/10.1094/PDIS-03-15-0319-RE

Rosa M, Genesio R, Gozzini B, Maracchi G and Orlandinic S. 1993. PLASMO: a computer program for grapevine downy mildew development forecasting. Computers and Electronics in Agriculture 9(3): 205-215. https://doi.org/10.1016/0168-1699(93)90039-4

Santana-Peñaloza B, Acevedo-Sánchez G, Coria-Contreras JJ, Mora-Aguilera G, González-Gómez R y López-Buenfil A. 2015. CALCULA-HF v1.0: Estimación de horas favorables de inductividad epidémica debido a la germinación de uredosporas de Hemileia vastatrix. Revista Mexicanade Fitopatología 33S: 119. https://www.smf.org.mx/rmf/suplemento/docs/Volumen332015/Suplemento-332015FULL.pdf

SENASICA. 2016. Roya del cafeto (Hemileia vastatrix Berkeley & Broome). Dirección General de Sanidad Vegetal. Programa de Vigilancia Epidemiológica Fitosanitaria. México, D.F. Ficha Técnica No. 40. 23 p. https://prod.senasica.gob.mx/SIRVEF/ContenidoPublico/Roya%20cafeto/Fichas%20tecnicas/Ficha%20T%C3%A9cnica%20de%20Roya%20del%20cafeto.pdf

SIAP (Servicio de Información Agrícola y Pesquera). 2018. Cierre de la producción agrícola por estados. http://www.siap.gob.mx/cierre-de-la-produccion-agricola-por-cultivo/

Tsukahara RY, Marceli H and Canteri MG. 2008. Relationship between climate and the progress of the asian soybean rust (Phakopsora pachyrhizi) in two micro-regions of Paraná State. Ciências Agrárias 29: 47-52. https://www.redalyc.org/pdf/4457/445744087005.pdf




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2104-6

Refbacks

  • There are currently no refbacks.