Fusarium sp., causal agent of vascular wilt in citrus and its sensitivity to fungicides
Abstract
Citrus wilt is a disease of recent appearance in the northern area of Veracruz that causes economic losses to producers in the region. The present work aimed to identify the causative agent of this disease and evaluate different fungicides to determine its in vitro sensitivity. A fungus was consistently isolated in plants with wilt symptoms; it was morphologically identified indifferent culture media and molecularly identified by PCR using the EF1-728F/EF1-986R primers. The fungus was inoculated in three varieties of citrus under greenhouse conditions. The sensitivity test was carried out with the fungicides chlorothalonil, benomyl thiabendazole, prochloraz, and a biological agent (Bacillus subtilis) at different concentrations, plus a negative control. Fusarium sp. (Accession No. MW438335) was morphologically and molecularly identified as the causal agent of vascular wilt in citrus fruits, causing growth retardation, decreased number of roots, wilting of the apical bud, and necrosis in the vascular system of the three varieties inoculated. The most effective fungicides in inhibiting mycelial growth were thiabendazole, prochloraz, and the biological agent Bacillus subtilis.
Keywords
Full Text:
PDFReferences
Amini J and Sidovich DF. 2010. The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. Journal of Plant Protection Research 50:172-178. http://www.plantprotection.pl/The-effects-of-fungicides-on-Fusarium-oxysporum-f-sp-lycopersici-associated-with,91523,0,2.html
Bardin M, Ajouz S, Comby M, Lopez-Ferber M, Graillot B, Siegwart M and Nicot PC. 2015. Is the efficacy of biological control against plant diseases likely to be more durable than thatof chemical pesticides? Frontiers in Plant Science 6: 566. https://doi.org/10.3389/fpls.2015.00566
Baysal-Gurel F and Cinar A. 2015. First report of Fusarium root rot caused by Fusarium oxysporum infecting pigmented grapefruit trees in Turkey. Plant Disease 99: 553. https://doi.org/10.1094/PDIS-07-14-0746-PDN
Carbone I and Kohn LM. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3):553-556. https://doi.org/10.1080/00275514.1999.12061051
Cook RJ. 1981. Fusarium diseases in the People's Republic of China. Pp:53-55. In: Fusarium: Diseases, Biology, and Taxonomy (eds PE Nelson TA Toussoun y RJ Cook). University Park, Pennsylvania: The Pennsylvania State University Press.
Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J and Foster GD. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13: 414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
FAOSTAT. 2019. Food and agriculture data. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/es/#data/QC (consulta, diciembre 2020).
Franco VA, Castillo LS, García OJ y Rodríguez NE. 2015. Situación de la citricultura en el Estado de Nuevo León. Corporación para el Desarrollo Agropecuario de Nuevo León. Monterrey, N.L. México. https://docplayer.es/28330442-Situacion-de-la-citricultura-en-nuevo-leon-cdanl-%20corporacion-para-el-desarrollo-agropecuario-gobierno-del-estado-de-nuevo-leon.html (consulta, noviembre 2020).
Güney IG and Güldür ME. 2018. Inoculation techniques for assessing pathogenicity of Rhizoctonia solani, Macrophomina phaseolina, Fusarium oxysporum and Fusarium solani on pepper seedlings. Türkiye Tar?msal Ara?t?rmalar Dergisi 5(1): 1-8. https://dergipark.org.tr/tr/download/article-file/402109
Hannachi I, Poli A, Rezgui S, Prassad RD and Cherif M. 2015. Genetic and phenotypic differences of Fusarium oxysporum f. sp. citri isolated from sweet orange and tangerine. European Journal of Plant Pathology 142: 269-280. https://doi.org/10.1007/s10658-015-0611-1
Hannachi I, Rezgui S and Cherif M. 2014. First report of mature citrus trees being affected by Fusarium wilt in Tunisia. Plant Disease 98: 566. https://doi.org/10.1094/PDIS-12-12-1134-PDN
Herman R and Perl-Treves R. 2007. Characterization and inheritance of a new source of resistance to Fusarium oxysporum f. sp. melonis Race 1.2 in Cucumis melo. Plant Disease 91:1180-1186. https://doi.org/10.1094/PDIS-91-9-1180
Holguín PRJ, Hernandez MLG y Zulueta RR. 2012. El huanglongbing: la tristeza de los cítricos. La ciencia y el hombre 25:3. https://www.uv.mx/cienciahombre/revistae/vol25num3/articulos/huanglongbing/
Iqbal Z, Khan MA, Sharif M, Shah JH, ur Rehman MH and Javed K. 2018. An automated detection and classification of citrus plant diseases using image processing techniques: a review. Computers and Electronics in Agriculture 153: 12-32. https://doi.org/10.1016/j.compag.2018.07.032
Kumar S, Stecher G, Li M, Knyaz C and Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
Lamichhane JR and Venturi V. 2015. Synergisms between microbial pathogens in plant disease complexes: a growing trend. Frontiers in Plant Science. 6:385. https://doi.org/10.3389/fpls.2015.00385
Leslie JF and Summerell B. 2006. The Fusarium Laboratory Manual. Blackwell Publishing. Manhattan, USA. 388p. https://doi.org/10.1002/9780470278376
Liu HF, Zhou J, Liao J, Yi JP, Ma DF and Deng JX. 2020. Grafted twig rot on Citrus sinensis caused by a member of the Fusarium solani species complex. Canadian Journal of Plant Pathology 42: 133-139. https://doi.org/10.1080/07060661.2019.1633412
McGovern RJ. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection 73:78-92. https://doi.org/10.1016/j.cropro.2015.02.021
Miranda-Granados J, Chacón C, Ruiz-Lau N, Vargas-Díaz ME, Zepeda LG, Álvarez-Gutiérrez P, Meza-Gordillo R and Lagunas-Rivera S. 2018. Alternative use of extracts of chipilín leaves (Crotalaria longirostrata Hook. & Arn) as antimicrobial. Sustainability 10: 883. https://doi.org/10.3390/su10030883
Mohammed BL, Hussein RA and Toama FN. 2019. Biological control of Fusarium wilt in tomato by endophytic rhizobactria. Energy Procedia 157:171-179. https://doi.org/10.1016/j.egypro.2018.11.178
Moretti A. 2009. Taxonomy of Fusarium genus: A continuous fight between lumpers and splitters. Matica Serbian Journal for Natural Sciences 117:7-13. https://doi.org/10.2298/zmspn0917007m
Motic Group. 2018. Motic images plus for windows 64 bit. Release 3.0. Motic Group. Hong Kong, China. https://moticeurope.com/en/news-and-events/post/motic-images-plus-3-0-user-manual.html
Parra-Cota FI, García-Pereyra J, Aviña-Martínez GN, y Santos-Villalobos S. 2018. Primer reporte de marchitamiento por Fusarium en Citrus sinensis var. valencia en el Valle del Yaqui, México. Revista Mexicana de Fitopatología 37(1): 193-201. https://doi.org/10.18781/R.MEX.FIT.1810-3
Romero-Velázquez SD, Tlalpan-Bolaños B, Cadena-Iñiguez J, Nieto-Ángel D, y Arévalo-Galarza ML. 2015. Hongos causantes de enfermedades postcosecha en chayote (Sechium edule (Jacq.) SW.) y su control in vitro. Agronomía Costarricense 39:19-32. https://www.redalyc.org/jatsRepo/436/43642603002/43642603002.pdf
Sandoval-Denis M, Guarnaccia V, Polizzi G and Crous PW. 2018. Symptomatic Citrus trees reveal a new pathogenic lineage in Fusarium and two new Neocosmospora species. Persoonia 40:125. https://doi.org/10.3767/persoonia.2018.40.01
SAS Institute. 2002. The SAS system for windows. Release 9.0. SAS Institute. North Carolina, USA.
Savita GVS and Nagpal A. 2012. Citrus diseases caused by Phytophthora species. GERF Bulletin of Biosciences 3:18-27. https://www.academia.edu/5763877/Citrus_diseases_caused_by_Phytophthora_species
Sharifi TA and Ramezani M. 2003. Biological control of Fusarium oxysporum, the causal agent of onion wilt by antagonistic bacteria. Communications in Agricultural and Applied Biological Sciences 68:543-547. https://pubmed.ncbi.nlm.nih.gov/15151288/
Song W, Zhou L, Yang C, Cao X, Zhang L and Liu X. 2004. Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Protection 23:243-247. https://doi.org/10.1016/j.cropro.2003.08.007
Valle-De la Paz M, Guillén-Sánchez D, Gijón-Hernández AR, Alía-Tejacal I, López- Martínez V, Juárez-López P, Martínez-Fernández V, Hernández-Arenas M y Ariza-Flores F. 2019. Especies de Lasiodiplodia en lima ‘Persa’ (Citrus latifolia Tanaka) en Morelos, México. Revista Bio Ciencias 6: e595. https://doi.org/10.15741/revbio.06.e595
Vásquez-Ramírez LM and Castaño-Zapata J. 2017. Manejo integrado de la marchitez vascular del tomate [Fusarium oxysporum f. sp. lycopersici (Sacc.) W.C. Snyder & H.N. Hansen]: una revisión. Revista U.D.C.A Actualidad y Divulgación Científica 20:363-374. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262017000200014
Villa-Martínez A, Pérez-Leal R, Morales-Morales HA, Basurto-Sotelo M, Soto-Parra JM y Martínez-Escudero E. 2014. Situación actual en el control de Fusarium spp. y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronómica 64:194-205. https://doi.org/10.15446/acag.v64n2.43358
Voigt K. 2002. Management of Fusarium Diseases. Pp:217–242. In: Kempken F (eds.). Agricultural Applications. Vol. 11. Springer. Berlin, Germany. https://doi.org/10.1007/978-3-662-03059-2.388p
Yaseen T and D’Onghia AM. 2012. Fusarium spp. associated to citrus dry root rot: an emerging issue for mediterranean citriculture. Acta Horticulturae 940:647-655. https://doi.org/10.17660/ActaHortic.2012.940.89
Yossen VE y Conles MY. 2014. Eficacia de fungicidas in vitro para el control de Fusarium oxysporum y F. proliferatum, agentes causales de marchitamiento en el cultivo de orégano en la Argentina. Revista Industrial y Agrícola de Tucumán 91:19-25. https://nanopdf.com/download/eficacia-de-fungicidas-in-vitro-para-el-control-de-fusarium_pdf.
DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2106-3
Refbacks
- There are currently no refbacks.