Benefic organisms in agricultural crops: Towards a safety and healthy food in response to COVID-19 and future syndemics

José Alfredo Samaniego-Gaxiola

Abstract


A population with an adequate immunity is key to reduce the effects of COVID-19. Moreover, a healthy diet and an innocuous environment are factors for an adequate immunity. Healthier and more innocuous foods could be obtained with the extensive use of beneficial organisms on agricultural crops, helping reduce the use of agrochemicals and increasing the tolerance of plants to stress caused by abiotic and biotic factors. Nitrogen-fixating bacteria or free-living bacteria, mycorrhizae, endosymbiotic microorganisms, endophytes, entomopathogenic fungi and bacteria, pest predators and parasitoids, hyper parasitic viruses of pests and pathogens are some of the organisms that can induce the natural suppression of parasites, fixate nitrogen and optimize the capture of nutrients and water, among other ecosystemic benefits. This revision presents functions and properties of beneficial organisms and proposals are made for their use to benefit farmers and consumers, with the intention of contributing to the productive processes towards a sustainable agriculture.


Keywords


Biological control;endophytes; sustainable agriculture; SARS-CoV-2

Full Text:

PDF

References


Bejarano González F (Ed.). 2018. Los plaguicidas altamente peligrosos en México. Red de Acción sobre Plaguicidas y Alternativas en México, AC RAPAM. https://www.rapam.org/wp-content/uploads/2017/09/Libro-Plaguicidas-Final-14-agst-2017sin-portada.pdf

Bi J, and Wang YF. 2020. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. Insect science 27(5):846-858. https://onlinelibrary.wiley.com/doi/full/10.1111/1744-7917.12731

Brunner-Mendoza C, Reyes-Montes, MDR, Moonjely S, Bidochka McJ and Toriello C. 2019. A review on the genus Metarhizium as an entomopathogenic microbial biocontrol agent with emphasis on its use and utility in Mexico. Biocontrol Science and Technology 291: 83-102. https://doi.org/10.1080/09583157.2018.1531111

Chitnis VR, Suryanarayanan TS, Nataraja KN, Prasad SR, Oelmüller R and Shaanker RU. 2020. Fungal Endophyte-Mediated Crop Improvement: The Way Ahead. Frontiers in Plant Science 11: Article 561007. https://pdfs.semanticscho-lar.org/5960/ce0d67c3fe5291735fe7d87e7568cef64caf.pdf

Cotes AM, (Ed.). 2018. Control biológico de fitopatógenos, insectos y ácaros. Vol. 1 y 2. Editorial AGROSAVIA. Mosquera, Colombia. https://reposi-tory.agrosavia.co/handle/20.500.12324/33829

Druzhinina, I. 2017. Using mother nature to help clean up mother nature. Scientia.global 113: 93-96. https://www.scientia.global/wp-content/uploads/2017/04/Irina-Druzhinina-single-pages.pdf

Eguiarte LE, Aguirre-Liguori JA, Jardón-Barbolla L, Aguirre-Planter E, and Souza, V. 2013. Genómica de poblaciones: nada en Evolución va a tener sentido si no es a la luz de la genómica, y nada en genómica tendrá sentido si no es a la luz de la evolución. Revista Especializada en Ciencias Químico-Biológicas 16(1): 42-56. https://www.medigraphic.com/pdfs/revespciequibio/cqb-2013/cqb131e.pdf

Espinosa JC. 2019. Aproximación teórica a la evolución de los endosimbiontes bacterianos de los áfidos. Tesis Doctoral. Universidad Complutense de Madrid. Madrid España. https://eprints.ucm.es/60084/1/T41866.pdf

García de León S y Mier T. 2010. Visión general de la producción y aplicación de bioplaguicidas en México. Sociedades Rurales, Producción Y Medio Ambiente 10 (20): 37–63. https://biblat.unam.mx/hevila/Sociedadesruralesproduccionymedioambiente/2010/vol10/no20/2.pdf

Geras’kin S, Oudalova A, Dikareva N, Spiridonov S, Hinton T, Chernonog E, and Garnier-Laplace J. 2011. Effects of radioactive contamination on Scots pines in the remote period after the Chernobyl accident. Ecotoxicology 20: 1195-1208. http://www.ecorad-mod.narod.ru/rus/publication2/Geraskin2011.pdf

González-Salgado IL, Rivera-Navarro J, Padilla-Bernáldez J y Gullón-Tosio P. 2021. Epidemiocracia. Nadie está a salvo si no estamos todos a salvo. Gaceta Sanitaria. https://doi.org/10.1016/j.gaceta.2020.11.007

Gordon SP, Contreras-Moreira B, Woods DP, Des Marais DL, Burgess D, Shu S,…. and Vogel JP. 2017. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nature Communications 8 (1):1-13. https://www.nature.com/articles/s41467-017-02292-8.pdf?origin=ppub

Guerra-Sierra BE. 2008. Micorriza arbuscular. Recurso microbiológico en la agricultura sostenible. Revista Tecnología En Marcha, 21(1):191-201. https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/1352

Guzmán-Guzmán, P, Porras-Troncoso, MD, Olmedo-Monfil V and Herrera-Estrella, A. 2019. Trichoderma species: versatile plant symbionts. Phytopathology 1091: 6-16. https://apsjournals.apsnet.org/doi/pdf/10.1094/PHYTO-07-18-0218-RVW

Hemalatha BN, Venkatesan T, alali SK, and Reetha B. 2014. Distribution and characterization of microbial communities in Chrysoperla zastrowi sillemi, an important predator of sap sucking insect pests. African Journal of Microbiology Research 814:1492-1500. https://doi.org/10.5897/AJMR2013.6506

Hemalatha BN. 2015. Studies on characterization of endosymbionts of Chrysoperla zastrowi sillemi Esben Peterson and their role on the fitness attribute. PhD Thesis. University of Mysore, India. http://hdl.handle.net/10603/62254

Hernández-Rosas F y García-Pacheco LA, Figueroa-Rodríguez, KA, Figueroa-Sandoval B, Salinas Ruiz J, Sangerman-Jarquín DM y Díaz-Sánchez EL. 2019. Análisis de las investigaciones sobre Metarhizium anisopliae en los últimos 40 años. Revista Mexicana de Ciencias Agrícolas 22(3):155-166. http://www.scielo.org.mx/pdf/remexca/v10nspe22/2007-0934-remexca-10-spe22-155-en.pdf

Horton R. 2020. Offline: COVID-19 is not a pandemic. Lancet, 396(10255), 874. https://doi.org/10.1016/S0140-6736(20)32000-6

Hu J, Zhou Y, Chen K, Li J, Wei Y, Wang Y,…. and Denton, MD. 2020. Large?scale Trichoderma diversity was associated with ecosystem, climate and geographic location. Environmental Microbiology 22(3):1011-1024. https://doi.org/10.1111/1462-2920.14798

Kaur, T. 2020. Fungal Endophyte-Host Plant Interactions: Role in Sustainable Agriculture. Sustainable Crop Production 211. http://dx.doi.org/10.5772/intechopen.92367

Knapp DG, Németh JB, Barry K, Hainaut, M., Henrissat, B, Johnson J,... and Ohm RA. 2018. Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Scientific reports 8(1):1-13. https://doi.org/10.1038/s41598-018-24686-4

Lata R, Chowdhury S, Gond SK, and White Jr JF. 2018. Induction of abiotic stress tolerance in plants by endophytic microbes. Letters in applied microbiology 66(4):268-276. https://doi.org/10.1111/lam.12855

Li X, Liu Q, Li W, Li Q, Qian Z, Liu X and Dong C. 2019. A breakthrough in the artificial cultivation of Chinese cordyceps on a large-scale and its impact on science, the economy, and industry. Critical Review Biotechnology 39(2):181-191. https://www.tandfonline.com/doi/full/10.1080/07388551.2018.1531820

Liu Y, Jin-Li CAO, Zou YN, Qiang-Sheng WU and Kamil KU?A. 2020. Piriformospora indica: a root endophytic fungus and its roles in plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(1):1-13. https://www.notulaebotani-cae.ro/index.php/nbha/article/view/11761/8880

Martín-Moreno JM, Arenas A, Bengoa R, Borrell C, Franco M, García-Basteiro A.,.... y Vives-Cases, C. 2021. Reflexiones sobre cómo evaluar y mejorar la respuesta a la pandemia de COVID-19. Gaceta Sanitaria. https://doi.org/10.1016/j.gaceta.2020.11.008

Mata-González R. 2020. Cambio Climático e Impacto Ambiental. Memoria XVI Congreso Nacional sobre Recursos Bióticos de Zonas Áridas. Durando, México. (En prensa). https://congresorebiza.mx/

Mukhopadhyay AN, Shrestha SA and Mukherjee PK. 1992. Biological seed tratments for control of soil borne plant pathogens. Plant Protection Bulletin. FAO 40 3:21-30. https://books.google.com.mx/books/about/FAO_Plant_Protection_Bulletin.html?id=XiZHp7LyoIsC&redir_esc=y

Nair IJ, Sharma S and Kaur R. 2020. Efficacy of the green lace wing, Chrysoperla zastrowi sillemi Esben-PetersonNeuroptera: Chrysopidae, against sucking pests of tomato: an appraisal under protected conditions. Egyptian Journal of Biological Pest Control, 30(1):1-6. https://doi.org/10.1186/s41938-020-00277-2

National Agricultural Innovation Project, Final Report 2014. An Initiative towards Innovative Agriculture. Indian Council of Agricultural Research. New Delhi, India. https://naip.icar.gov.in/download/nai-final-reports.pdf

Pacheco Hernández, M, Reséndiz Martínez, J and Arriola Padilla, V. J. 2019. Organismos entomopatógenos como control biológico en los sectores agropecuario y forestal de México: Una revisión. Revista mexicana de ciencias forestales 10(56):4-32. https://doi.org/10.29298/rmcf.v10i56.496

Polack, LA. 2008. Interacciones tritróficas involucradas en el control de plagas de cultivos hortícolas Tesis Doctoral. Universidad Nacional de La Plata. Argentina. http://sedici.unlp.edu.ar/bitstream/handle/10915/4388/Documento_completo__.pdf?sequence=1

Poveda-Arias, J. 2019. Los microorganismos asociados a los insectos y su aplicación en la agricultura. Revista Digital Universitaria 20 (1): 1-15. http://doi.org/10.22201/codeic.16076079e.2019.v20n1.a2.

Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, ... and Saxena AK. 2019. Endophytic fungi: biodiversity, ecological significance, and potential industrial applications. In Recent advancement in white biotechnology through fungi pp. 1-62. Springer, Cham. https://doi.org/10.1007/978-3-030-10480-1_1

Redman RS, Sheehan KB, Stout RG, Rodriguez RJ and Henson JM. 2002. Thermotolerance generated by plant/fungal symbiosis. Science 298(5598):1581-1581. https://www.howplantswork.com/hotplants/PDF/Redman.pdf

Rodriguero, MS. 2013. Wolbachia, una pandemia con posibilidades. Revista de la Sociedad Entomológica Argentina 72(3):117-137. https://www.redalyc.org/pdf/3220/322030024001.pdf

Rodriguez, RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, and Redman RS. 2008. Stress tolerance in plants via habitat-adapted symbiosis. The ISME journal 24:404-416. https://www.nature.com/articles/ismej2007106/

Samaniego-Gaxiola JA, Pedroza-Sandoval A, Bravo A, Sánchez JF, Peña-Chora G, Mendoza-Flores D, Chew-Madinaveitia Y y Gaytán-Mascorro A. 2019. Fumigación con ácidos acéticos y antimicrobianos para disminuir mortandad de Chrysoperla carnea por infección indeterminada. Revista mexicana de ciencias agrícolas 10(5):973-986. http://www.scielo.org.mx/pdf/remexca/v10n5/2007-0934-remexca-10-05-973-en.pdf

Samaniego-Gaxiola, J. A, Ramírez-Delgado, M, Pedroza-Sandoval, A, and Nava-Camberos, U. 2008. Asociación entre pudrición texana Phymatotrichopsis omnivora e insectos barrenadores del nogal Carya illinoensis. Agricultura Técnica en México 34:21-32. http://www.scielo.org.mx/pdf/agritm/v34n1/v34n1a3.pdf

SENASICA. 2020. https://www.gob.mx/senasica/acciones-y-programas/acciones-estrategicas-de-sanidad-vegetal

Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P,... and Yadav AN. 2019. Trichoderma: biodiversity, ecological significances, and industrial applications. In Recent advancement in white biotechnology through fungi pp. 85-120. Springer, Cham. https://doi.org/10.1007/978-3-030-10480-1_3

Siddiquee S, Cheong E, Taslima K, Hossain K, and Hasan M. 2012. Separation and Identi?cation of volatile compounds from liquid cultures of Trichoderma harzianum by GC-MS using three different capillary columns. Journal of Chromatographic Science 50:358-367. https://www.cabdirect.org/cabdirect/abstract/20123275901

Sugio A, Dubreuil G, Giron D, and Simon JC. 2015. Plant–insect interactions under bacterial influence: ecological implications and underlying mechanisms. Journal of Experimental Botany 66(2):467-478. https://hal.archives-ouvertes.fr/hal-01312942/

Torres MS, White JF. 2010. Grass Endophyte-Mediated Plant Stress Tolerance: Alkaloids and Their Functions. In: Seckbach J, Grube M. eds Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, Vol. 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9449-0_24

Van der Valk, H. 2007. Review of the efficacy of Metarhizium anisopliae var. acridum against the desert locust. Desert Locust Technical Series. FAO, Rome. http://www.fao.org/ag/lo-custs/common/ecg/1295/en/TS34e.pdf

Wang CH, Hou R, Wang M, He G, Li BG, and Pan RL. 2020. Effects of wet atmospheric nitrogen deposition on epiphytic lichens in the subtropical forests of Central China: Evaluation of the lichen food supply and quality of two endangered primates. Ecotoxicology and Environmental Safety 190:110128. https://doi.org/10.1016/j.eco-env.2019.110128

Williams T, Arredondo-Bernal HC, and Rodríguez-del-Bosque LA. 2013. Biological pest control in Mexico. Annual Review of Entomology, 58:119-140. https://doi.org/10.1146/annurev-ento-120811-153552

Yan L, Zhao H, Zhao X, Xu X, Di Y, Jiang C,... and Jin M. 2018. Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions. Applied Microbiology and Biotechnology 102(15):6279-6298. https://doi.org/10.1007/s00253-018-9101-7

Zimmermann, G Huger AM, and Kleespies RG. 2013. Occurrence and Prevalence of Insect Pathogens in Populations of the Codling Moth, Cydia pomonella L.: A Long-Term Dgnostic Survey. Insects 43:425–446. https://doi.org/10.3390/insects4030425




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2021-13

Refbacks

  • There are currently no refbacks.