In vitro nematocidal activity of the Pleurotus djamor PdR-2 fraction against J2 of Meloidogyne enterolobii

Olga Gómez-Rodríguez, Jesús Antonio Pineda-Alegría, Gloría Sarahi Castañeda-Ramírez, Manasés González-Cortazar, José E. Sánchez, Liliana Aguilar-Marcelino

Abstract


Recently, the root-knot nematode Meloidogyne enterolobii have generated important economic losses (65%) in worldwide agriculture. In the present study, the nematocidal activity of the PdR-2 fraction of Pleurotus djamor was evaluated against the second instar juvenile (J2) of M. enterolobii. Different concentrations of the PdR-2 fraction (0.039, 0.078, 0.156, 0.132, 0.625, and 1.25 mg mL-1) were evaluated, as well as the respective control groups (water and Levamisole, 5 mg mL-1) in a volume of 100 µL (n=4). J2s were exposed for 24 h and subsequently quantified, and the percentage of mortality was estimated. Data were analyzed by analysis of variance with the general linear model and a comparison of means with Tukey’s test (p < 0.05). The PdR-2 fraction at concentrations of 0.132, 0.625, and 1.25 mg mL-1 were significantly equal with respect to Levamisole application, showing a mortality of 87.6, 84.5, and 86.3%, respectively. At the lowest concentration (0.039 mg mL-1), 40.3% mortality was recorded, whereas 86% was recorded at the highest concentration evaluated (1.25 mg mL-1). The PdR-2 fraction of P. djamor had nematocidal activity against J2s of M. enterolobii.


Keywords


root-knot nematode; Edible mushroom; Chemical fraction; Alternative control

Full Text:

PDF

References


Abd-Elgawad MMM and Askary TH. 2015. Impact of phytonematodes on agriculture economy. Pp. 3–49. In: Askary TH and Martinelli PRP (Eds.). Biocontrol agents of phytonematodes. Wallingford, UK: CABI. https://doi.org/10.1079/9781780643755.0003.

Akhtar M and Malik A. 2000. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresource Technology 74:35–47. https://doi.org/10.1016/S0960-8524(99)00154-6

Barron GL and Thorn RG. 1987. Destruction of nematodes by species of Pleurotus. Canadian Journal of Botany 65:774–778. https://doi.org/10.1139/b87-103

Carrillo-Fasio JA, Martínez-Gallardo JA, Allende-Molar R, Velarde-Félix S, Romero-Higareda CE and Retes-Manjarrez JE. 2019. Distribution of Meloidogyne species (Tylenchida: Meloidogynidae) in tomato crop in Sinaloa, Mexico. Nematropica 49:71–82. https://journals.flvc.org/nematropica/article/view/115619

Carrillo-Fasio JA, Martínez-Gallardo JA, Ayala-Tafoya F, López-Orona CA, Allende-Molar R and Retes-Manjarrez JE. 2020. Screening for resistance to Meloidogyne enterolobii in Capsicum annuum landraces from Mexico. Plant Disease 104(3): 817–822. https://doi.org/10.1094/PDIS-04-19-0718-RE

Castagnone-Sereno P. 2012. Meloidogyne enterolobii (=M. mayaguensis): profile of an emerging, highly pathogenic, root-knot nematode species. Nematology 14: 133–138. https://doi.org/10.1163/156854111X601650

Castañeda-Rami?rez GS, Torres-Acosta JFJ, Sánchez JE, Mendoza de Gives P, González-Cortazar M, Zamilpa A, Al-Ani LKT, Sandoval-Castro C, Soares FEF and Aguilar-Marcelino L. 2020. Biotechnological use of edible mushrooms bio-products for controlling plant and animal parasitic nematodes. Biomed Research International 6078917: 1–12. https://doi.org/10.1155/2020/6078917

Cid del Prado-Vera I, Franco-Navarro F and Godinez-Vidal D. 2018. Plant parasitic nematodes and management strategies of major crops in Mexico. pp. 31–68. In: Subbotin SA and Chitambar JJ (Eds.), Plant Parasitic Nematodes in Sustainable Agriculture of North America, sustainability in plant and crop protection. Switzerland: Springer Nature. https://doi.org/10.1007/978-3-319-99585-4_2

Cohen R, Persky L and Hadar Y. 2002. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Applied Microbiology and Biotechnology 58(5): 582–94. https://doi.org/10.1007/s00253-002-0930-y

Cruz-Arévalo J, Sánchez JE, González-Cortázar M, Zamilpa A, Andrade-Gallegos RH, Mendoza de Gives P and Aguilar-Marcelino L. 2020. Chemical composition of an anthelmintic fraction of Pleurotus eryngii against eggs and infective Larvae (L3) of Haemonchus contortus. Biomed Research International 4138950: 1¬–8. https://doi.org/10.1155/2020/4138950

Genier HLA, de Freitas SFE, de Queiroz JH, de Souza GA, Araújo JV, Braga FR, Pinheiro IR and Kasuya MCM. 2015. Activity of the fungus Pleurotus ostreatus and of its proteases on Panagrellus sp. larvae. African Journal of Biotechnology 14(17): 1496–1503. https://doi.org/10.5897/AJB2015.14447

González-Cortazar M, Sánchez JE, Huicochea-Medina M, Hernández-Velázquez VM, Mendoza-de-Gives P, Zamilpa A, López-Arellano ME, Pineda-Alegría JA and Aguilar-Marcelino L. 2020. In vitro and in vivo nematicide effect of Pleurotus djamor fruiting bodies against Haemonchus contortus. Journal of Medicinal Food 24(3): 310-318. https://doi.org/10.1089/jmf.2020.0054

Heydari R, Pourjarn E and Mohammadi EG. 2006. Antagonistic effect of some species of Pleurotus on the root-knot nematode, Meloidogyne javanica in vitro. Plant Pathology Journal 5(2):v173–177. https://doi.org/10.3923/ppj.2006.173.177

Kwok OCH, Plattner R, Weisleder D and Wichlow DT. 1992. A nematicidal toxin from Pleurotus ostreatus NRRL 3526. Journal Chemical Ecology 18: 127–136. https://doi.org/10.1007/BF00993748

Li G, Wang X, Lijun L, Li L, Huang R and Zhang K. 2007. Nematicidal metabolites from the fungus Pleurotus ferulae Lenzi. Annals of Microbiology 57(4):v527–529. https://doi.org/10.1007/BF03175350

Moens M, Perry RN and Starr JL. 2009. Meloidogyne Species – a diverse group of novel and important plant parasites. In: Perry RN, Moens M and Starr JL (Eds.). Root-knot nematodes (pp.1-17). Wallingford, UK: CAB International. https://www.cabi.org/isc/FullTextPDF/2009/20093330181.pdf

Oka Y. 2001. Nematicidal activity of essential oil components against the root-knot nematode Meloidogyne javanica. Nematology 3:159–164.

Philbrick AN, Adhikari TB, Louws FJ and Gorny AM. 2020. Meloidogyne enterolobii, a major threat to tomato production: current status and future prospects for its management. Frontiers in Plant Science 11: 606395. https://doi.org/10.3389/fpls.2020.606395

Pineda-Alegría JA, Sánchez-Vázquez JE, González-Cortazar M, Zamilpa A, López-Arellano ME, Cuevas-Padilla EJ, Mendoza-de-Gives P and Aguilar-Marcelino L. 2017. The edible mushroom Pleurotus djamor produces metabolites with lethal activity against the parasitic nematode Haemonchus contortus. Journal of Medicinal Food 20: 1184–1192. https://doi.org/10.1089/jmf.2017.0031

Ramirez-Suarez A, Rosas-Hernandez L, Alcasio-Rangel S and Powers TO. 2014. First report of the root-knot nematode Meloidogyne enterolobii parasitizing watermelon from Veracruz, México. Plant Disease 98(3): 428. https://doi.org/10.1094/PDIS-06-13-0636-PDN

Romero M, Macías MG, Carrillo FJA, Rojas CM, Hernández RJS and Duarte OJD. 2019. Identificación y distribución de especies de Meloidogyne en Baja California Sur, México. Revista Mexicana de Ciencias Agrícolas 10(2): 337–349. https://doi.org/10.29312/remexca.v10i2.1603

Samsam-Shariat H, Farid H and Kavianpour M. 1994. A study of the anthelmintic activity of aqueous extract of Pleurotus eryngii on Syphacia obvelata and Hymenolepis nana. Journal of Science, Islamic Republic of Iran 5:19–22. https://jsciences.ut.ac.ir/article_31372.html

Villar-Luna E, Gómez-Rodríguez O, Rojas-Martínez RI and Zavaleta-Mejía E. 2016. Presence of Meloidogyne enterolobii on jalapeño pepper (Capsicum annuum L.) in Sinaloa, Mexico. Helminthologia 53: 155–160. https://doi.org/10.1515/helmin-2016-0001

Vrain TC. 1977. A technique for the collection of larvae of Meloidogyne spp. and a comparison of eggs and larvae as inocula. Journal of Nematology 9: 249–251. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2620246/

Wong-Villarreal A, Méndez-Santiago EW, Gómez-Rodríguez O, Aguilar-Marcelino L, García DC, García-Maldonado JQ, Hernández-Velázquez VM, Yañez-Ocampo G, Espinosa-Zaragoza S, I Ramírez-González S, Sanzón-Gómez D. 2021. Nematicidal Activity of the Endophyte Serratia ureilytica against Nacobbus aberrans in Chili Plants (Capsicum annuum L.) and Identification of Genes Related to Biological Control. Plants (Basel). 10(12): 2655. https://doi.org/10.3390/plants10122655.




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2202-2

Refbacks

  • There are currently no refbacks.