Polyphenols extraction from creosote bush, tarbush, and soursop using ultrasound-microwave and their effect against Alternaria alternata and Fusarium solani
Abstract
Crops are affected by different pathogens that cause damage to the plant and production losses. Quarantine restrictions may also occur due to the presence of a pathogen. In most cases, synthetic chemical products are used to control phytopathogens. However, some of these products have been associated with risks to human health or the environment. Therefore, it is necessary to search for more sustainable alternatives to control these pathogens. This research was carried out under the following objectives: 1. To extract polyphenols from Creosote bush, Tarbush and Soursop leaves using: different mass/volume ratios (m/v), different concentrations of ethanol, simultaneous ultrasound-microwave and 2. To determine the effect of these polyphenols against Fusarium solani and Alternaria alternata. Polyphenols were obtained from Creosote bush, Tarbush and Soursop leaves by combining ultrasound-microwave, and using different massvolume ratios and ethanol percentages. The group of polyphenols (CD) obtained with a mass/volume (m/v) ratio of 1:8 and 70% ethanol from Creosote bush leaves and the group of polyphenols (CA) obtained with a m/v ratio 1:16 and 70% ethanol from Tarbush leaves were the most effective against Fusarium solani, inhibiting 90.4 and 60.67%, respectively. For Alternaria alternata, no differences were found in the mycelial inhibition by the different groups of evaluated polyphenols, with inhibition values between 50-60% in comparison to the negative control (without polyphenols). In the profile of CD polyphenols group obtained from Creosote bush, different polyphenolic compounds reported to have antimicrobial activity were found, among which the following stand out: epirosmanol, rosmadiol, apigenin, catechin, and procyanidin C1. Polyphenolic compounds isolated from Creosote bush, Tarbush, and Soursop leaves using environmentally friendly methods (ultrasoundmicrowave) and solvents (water and ethanol) showed antifungal activity against F. solani and A. alternata.
Keywords
Full Text:
PDFReferences
Abbas MF, Rafiq M, Al-Sadi AM, Alfarraj S and Alharbi SA. 2021. Molecular characterization of leaf spot caused by Alternaria alternata on buttonwood (Conocarpus erectus L.) and determination of pathogenicity by a novel disease rating scale. PLoS ONE 16 (5): e0251471. https://doi.org/10.1371/journal.pone.0251471
Abdel MF, Abo EK, and Morsy KM. 2011. Effectiveness of plant extracts on suppression of damping-off and wilt diseases of lupine (Lupinus termis Forsik). Crop Protection 30(2): 185-191. https://doi.org/10.1016/j.cropro.2010.09.016
Álvarez CE y Orallo CF. 2003. Actividad biológica de los flavonoids (I). 2003. Acción frente al cancer. Offarm 22(10): 130-140. https://www.elsevier.es/es-revista-offarm-4-pdf-13054406
Andrade AG, Delgado AA, Herrera CB, Arévalo GLL y Caso BL. 2018. Variación de compuestos fenólicos totales, flavonoides y taninos en Vanilla planifolia jacks. ex Andrews de la Huasteca Hidalguense, México. Agrociencia 52(1): 55-66. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952018000100055&lng=es&tlng=es
Apolonio RI, Franco MO, Salgado SM and Aquino MJ. 2017. In vitro inhibition of Botrytis cinérea with extracts of wild grape vine (Vitis spp.) leaves. Mexican Journal of Phytopathology 35(2): 170-185. https://doi.org/10.18781/r.mex.fit.1611-1
Ashurst JV and Nappe TM. 2022. Methanol Toxicity. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK482121/
Ávila SR, Navarro CAR, Aguilar AP, Vera LO y Dávila MRM. 2011. Romero: una revisión de sus usos no culinarios. Ciencia y Mar 15(43): 23-36. http://cienciaymar.mx/Revista/index.php/cienciaymar/issue/view/22/ART43_2
Baümler ER, Carrín ME and Carelli AA. Extraction of sunflower oil using ethanol as solvent. Journal of Food Engineering 178: 190-197. https://doi.org/10.1016/j.jfoodeng.2016.01.020
Berlanga PAM, Gallegos MG, Cepeda SM, Rodríguez HR, Aguilar CN, Castillo RF and Hernández CFD. 2011. In vitro antagonist action of Trichoderma strains against Sclerotinia sclerotiorum and Sclerotium cepivorum. American Journal of Agricultural and Biological Sciences 6(3): 410-417. https://doi.org/10.3844/ajabssp.2011.410.417.
Bocker R and Silva EK. 2022. Innovative technologies for manufacturing plant-based non-dairy alternative milk and their impact on nutritional. Sensory and Safety Aspects 5: 100098. https://doi.org/10.1016/j.fufo.2021.100098
Castrillo M, Bich G, Sioli G, Zapata P and Villalba L. 2021. Biocontrol capacity of native isolates of Trichoderma sp. against the phytopathogenic fungus Alternaria alternata isolated from yerba mate (Ilex paraguariensis Saint Hil.). Chilean Journal of Agricultural & Animal Sciences 37(3): 244-256. https://dx.doi.org/10.29393/chjaas37-26cbml50026
Chemat F, Rombaut N, Anne-Gaëlle S, Meullemiestre A, Fabiano-Tixier AS and Abert-Vian M. 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry 34: 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035
Chemat F, Abert Vian M., Ravi HK., Khadhraoui B, Hilali S, Perino S, and Tixier AF. 2019. Review of alternative solvents for green extraction of food and natural products: Principles, Applications and Prospects. Molecules 24(16): 3007. https://doi.org/10.3390/molecules24163007
Costa M, Sezgin BZ, Losada BS, Paiva MF, Saso L, and Bravo DC. 2021. Polyphenols as antioxidants for extending food shelf-life and in the prevention of health diseases.: Encapsulation and Interfacial Phenomena. Biomedicines 9(12) 1909. https://doi.org/10.3390/biomedicines9121909
Dasiman R, Nor NM, Eshak Z, Mutalip SSM, Suwandi NR and Bidin H, 2022. A Review of Procyanidin: Updates on current bioactivities and potential health benefits. Biointerfase Research in Applied Chemistry 12(5):5918 – 5940. https://doi.org/10.33263/BRIAC125.59185940
Farag HR, Zeinab AA, Dawlat AS, Mervat ARI and Sror HAM. 2011. Effect of neem and willow aqueous extracts on Fusarium wilt disease in tomato seedlings: Induction of antioxidant defensive enzymes. Annals of Agricultural Sciences 56(1): 1-7 http://dx.doi.org/10.1016/j.aoas.2011.05.007
Gamboa-Alvarado R, Hernández CFD, Guerrero RE, Sánchez AA y Lira SRH. 2003. Inhibición del crecimiento micelial de Rhizoctonia solani Kuhn y Phytophthora infestans Mont. (De Bary) con extractos vegetales metanólicos de Hojasén (Flourensia cernua DC.), Mejorana (Origanum majorana L.) y Trompetilla (Bouvardia ternifolia (Ca.) Schlecht.). Revista Mexicana de Fitopatología 21(1): 13-18. https://www.redalyc.org/articulo.oa?id=61221102
García W, Lezama H y Pumachagua P. 2019. Estudio teórico de la actividad antioxidante de compuestos aromáticos con bases de schiff heterocíclicas sustituidos en posiciones meta y para. Rev Soc Quím Perú 85(2): 242-257. http://www.scielo.org.pe/pdf/rsqp/v85n2/a11v85n2.pdf
Gómez-Martínez M, Ascacio-Valdés JA, Flores-Gallegos AC, González-Domínguez J, Gómez-Martínez S, Aguilar CN and Rodríguez-Herrera R. 2020. Location and tissue effects on phytochemical composition and in vitro antioxidant activity of Moringa oleifera. Industrial Crops and Products 151: 1124-1139. https://doi.org/10.1016/j.indcrop.2020.112439
Guerrero RE, Solís GS, Hernández CF, Flores OA, Sandoval LV, y Jasso CD. 2007. Actividad biológica in vitro de extractos de Flourensia cernua D.C. en patógenos de postcosecha: Alternaria alternata (Fr.:Fr.) Keissl., Colletotrichum gloeosporioides (Penz.) Penz. y Sacc. y Penicillium digitatum (Pers.:Fr.) Sacc.. Mexican Journal of Phytopathology 25(1): 48-53. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33092007000100007&lng=es&tlng=es
Gutiérrez GE, Ambriz PD, Leyva LN, Castillo LR and Heredia JB. 2016. Bioavailability of dietary phenolic compounds: review. Revista Española de Nutrición Humana y Dietética 20(2): 140-147. https://dx.doi.org/10.14306/renhyd.20.2.184
Istúriz ZMA, Pérez PM, Contreras SS, and Barrera NLL. 2019. Effect of ethanol extract of fig residue (Ficus carica) on growth of postharvest fungi. Mexican Journal of Phytopathology 37(1):72-79. http://dx.doi.org/10.18781/R.MEX.FIT.1904-6
Joaquín RAJ, López PCU, Pinedo EJM, Altamirano RSE, Santiago SYO, Aguirre MCL, and Gutiérrez TJ. 2020. Phenolic compounds, antioxidant properties and antifungal activity of jarilla (Barkleyanthus salicifolius Rob & Brettell). Chilean Journal of Agricultural Research 80(3): 352-360. https://dx.doi.org/10.4067/S0718-58392020000300352
Leslie J and Summerell A. 2006. The Fusarium Lab Manual. Blackwell Publishing, Ames. 278p. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470278376
López MNR, Romero BM, Arce APM and Hernández RJS. 2019. Actividad antifúngica de antioxidantes derivados de cuatro cultivares de Capsicum spp. contra hongos fitopatógenos. Ecosistemas y Recursos Agropecuarios 6(18): 487-498. https://doi.org/10.19136/era.a6n18.2174
Mantecón JD. 2015. Fungicidas aplicados al suelo como estrategia de manejo integrado de enfermedades en papa, bajo escenarios de elevada infestación inicial y residual. Revista Latinoamericana de la Papa 19(1): 29-39. https://doi.org/10.37066/ralap.v19i1.224
Martínez MT, Guerrero AB, Pecina QV, Rivas VP, González PE y Angeles NJ. 2020. Antagonismo de Trichoderma harzianum contra la fusariosis del garbanzo y su efecto biofertilizante. Revista Mexicana de Ciencias Agrícolas 11(5): 1135-1147. https://doi.org/10.29312/remexca.v11i5.2325
Martínez PE, Abreu FJ and Cantillo PT. 2021.Incidence of Alternaria spp. on cereal, vegetable, fruit and ornamental sedes. Revista de Protección Vegetal 36(1): 2224-4697. http://revistas.censa.edu.cu/index.php/RPV/article/view/1123/1754
Martínez SG, Rey BJ, Pargas PR y Manzanilla EE. 2020. Marchitez por Fusarium raza tropical 4: Estado actual y presencia en el continente americano. Agronomía Mesoamericana 31(1): 259-276. https://doi.org/10.15517/am.v31i1.37925
Mata SC, Leyva MS, Camacho TM, Tovar PM, Huerta EJ, Villaseñor MH and García LE. 2018. Agresividad de aislados de Bipolaris sorokiniana y Alternaria alternata en variedades de trigo en México. Mexican Journal of Phytopathology 36(3): 432-443. https://doi.org/10.18781/r.mex.fit.1803-3
Morales RI, Yañez MM, Silva RH, García DG Guzmán PD. 2007. Biodiversity of Fusarium species in México associated with ear rot in maize, and their identification using a phylogenetic approach. Mycopathologia 163:31-39. https://doi.org/1007/s11046-006-0082-1.
Mutha RE, Tatiya AU and Surana SJ. 2021. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Future Journal of Pharmaceutical Sciences 7(1): 25. https://doi.org/10.1186/s43094-020-00161-8
Nguyen TLA and Bhattacharya D. 2022. Antimicrobial activity of quercetin: an approach to its mechanistic principle. Molecules 27:2494. https://doi.org/ 10.3390/molecules27082494.
Oufensou S, Balmas V, Azara E, Fabbri D, Dettori MA, Schüller C, Zehetbauer F, Strauss J, Delogu G, and Migheli Q. 2020. Naturally occurring phenols modulate vegetative growth and deoxynivalenol biosynthesis in Fusarium graminearum. ACS Omega 5(45): 29407-29415. https://doi.org/10.1021/acsomega.0c04260
Pan JH, Peng CY, Lo CT, Dai CY, Wang CL and Chuang HY. 2017. n-Hexane intoxication in a Chinese medicine pharmaceutical plant: a case report. Journal of Medical Case Reports 11: 120. https://doi.org/10.1186/s13256-017-1280-9
Peñuelas RO, Arellano GM, Verdugo FAA, Chaparro- ELA, Hernández RSE, Martínez CJL y Vargas AIC. 2017. Extractos de Larrea tridentata como una estrategia ecológica contra Fusarium oxysporum radicis-lycopersici en plantas de tomate bajo condiciones de invernadero. Mexican Journal of Phytopathology 35(3): 360-376. https://doi.org/10.18781/r.mex.fit.1703-3
Pérez RL, Pérez ML, Guzmán MR, Sanzón GD y Belmonte VJ. 2019. Sensibilidad in vitro de hongos fitopatógenos causantes de enfermedades en fresa a controladores biológicos y fungicidas, en el estado de Guanajuato, México. Acta universitaria 29: 1-11. https://doi.org/10.15174/au.2019.2339
Quintana SE, Villanueva BD, Reglero G, García RMR and Fornari T. 2019. Supercritical antisolent particle precipitation and fractionation of rosemary (Rosmarinus officinalis L.). Journal of CO2 Utilization 34: 479-489. https://doi.org/10.1016/j.jcou.2019.07.032
Rahardiyan D. 2019. Antibacterial potential of catechin of tea (Camellia sinensis) and its applications. Food Research 3 (1): 1 – 6. https://doi.org/10.26656/fr.2017.3(1).097
Reyes TA, Rodríguez AG, Santillán MR, Díaz CM y Fernández PS. 2019. Marchitez causada por Fusarium solani en chile chilaca (Capsicum annuum) en Michoacán. Mexican Journal of Phytopathology 37 (No. Esp. 1): 43-47. http://dx.doi.org/10.18781/R.MEX.FIT.1904-1
Rodríguez CA, Torres HS, Domínguez CA, Romero GA and Silva FM. 2020. Plant extracts to control Fusarium oxysporum, Fusarium solani y Rhizoctonia solani: a sustainable alternative for agriculture. Abanico Agroforestal 2:1-13. https://abanicoacademico.mx/revistasabanico/index.php/abanico-agroforestal/article/view/265
Sanzani SM, De Girolamo A, Schena L, Solfrizzo M, Ippolito A and Visconti A. 2009. Control of Penicillium expansum and patulin accumulation on apples by quercetin and umbelliferone European Food Research and Technology 228: 381-389. https://doi.org/10.1007/s00217-008-0944-5
Sepúlveda-Rincón CT, Ciro-Gómez GL y Zapata-MontoyaI JE, 2016. Extracción de compuestos fenólicos y actividad antioxidante de hojas de Bixa orellana L. (achiote). Revista Cubana de Plantas Medicinales, 21(2):133-144. http://scielo.sld.cu/pdf/pla/v21n2/pla02216.pdf
Shisong J, Xinran R, Li W, Xiangri K, Xingye W, Xiren C, Xuerui G, Yan S, Jiyu G, Tiedong W, Bingmei W, Wu S and Yicheng Z. 2022. Nepetin reduces virulence factors expression by targeting ClpP against MRSA-induced pneumonia infection. Virulence 13(1):578-588, http://dx.doi.10.1080/21505594.2022.2051313
Simmons EG. 2007. Alternaria: an identification manual. CBS Fungal Biodiversity Centre, Utrecht, the Netherlands. 775 pp. https://www.nhbs.com/alternaria-an-identification-manual-book.
Singh R and Chandrawat KS. 2017. Role of phytoalexins in plant disease resistance. International Journal of Current Microbiology and Applied Sciences 6(1): 125-129. http://dx.doi.org/10.20546/ijcmas.2017.601.016
Soto GM y Rosales CM. 2016. Efecto del solvente y de la relación masa/solvente, sobre la extracción de compuestos fenólicos y la capacidad antioxidante de extractos de corteza de Pinus durangensis y Quercus sideroxyla. Maderas. Ciencia y Tecnología 18(4): 701-714. https://dx.doi.org/10.4067/S0718-221X2016005000061
Sridhar N, Krishnakishore C, Sandeep Y, Sriramnaveen P, Manjusha Y and Sivakumar V. 2011. Chloroform Poisoning – A Case Report. Renal Failure 33(10): 1037-1039. https://doi.org/10.3109/0886022X.2011.618920
Takshak S and Agrawal SB. 2019. Defense potential of secondary metabolites in medicinal plants under UV-B stress. Journal of Photochemistry and Photobiology B: Biology 193: 51-88. https://doi.org/10.1016/j.jphotobiol.2019.02.002
Valdez GD, Esparza GS, Morlett CJ, Nery FS, Flores GA, Ascacio VJ and Rodríguez-Herrera R 2021. Isolation of polyphenols from soursop (Annona muricata L.) leaves using green chemistry techniques and their anticancer effect. Biological and Applied Sciences 64: e21200163. https://doi.org/10.1590/1678-4324-2021200163
Vitola RD and Pérez CA. 2016. Bioactivity from Annona muricata extracts and essentials oils from Citrus aurantium against Phytophthora cinnamomi. Revista Colombiana de Ciencia Animal 8(s): 325-334. https://doi.org/10.24188/recia.v8.n0.2016.388
Zhang Y, Cai P, Cheng G and Zhang Y. 2022. A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Natural Product Communications 17(1): 1-14. https://doi.org/10.1177/1934578X211069721
Zhang J, Cui X, Zhang M, Bai B, Yang Y and Fan S. 2021. The antibacterial mechanism of perilla rosmarinic acid. Biotechnology Applied Biochemistry. https://doi.org/10.1002/bab.2248.
DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2206-7
Refbacks
- There are currently no refbacks.