Comparison of enzymes and phenolic compounds in three citrus species infected with Candidatus Liberibacter asiaticus

Lidia Monserrat Flores Torres, Alberto Flores Olivas, Yisa María Ochoa Fuentes, José Isabel López Arroyo, Víctor Olalde Portugal, Adalberto Benavides Mendoza, Susana González Morales, Víctor Manuel Zamora Villa

Abstract


The objective was to determine differences in antioxidant enzyme activity and total phenol concentration in Mexican lime plants (Citrus aurantifolia (Christm.) Swingle), Persian lime (Citrus latifolia Tanaka); and Valencia sweet orange (Citrus sinensis (L.) Osbeck). Infected under natural field conditions with Candidatus Liberibacter asiaticus (CaLas), in Bustamante, Tamaulipas, Mexico. The presence of CaLas was determined by qPCR. We determined the enzymatic activity of phenylalanine ammonia lyase (PAL), which is activated by pathogen attack; the peroxidase involved in wall lignification in response to infection; the α-amylase which degrades starch and accumulates in vascular tissue; and phenolic compounds involved in defense functions. A contrasts analysis was performed. Total protein concentration showed significant differences between species (P <0.0001). With a mean of 6.1 and 6.37 mg of protein per g of fresh tissue for infected Mexican lime trees, and sweet orange negative CaLas. The peroxidase activity presented a significant difference for Persian lime (P=0.0341), with a mean of 1.96 U.mg of protein-1. In sweet orange, higher α-amylase activity was observed in CaLas infected trees (1.19 U.mg protein-1). The concentration of PAL and total phenols did not show significant differences between species. In the present study it was observed that CaLas influences the enzymatic activity of Citrus species.


Keywords


Huanglongbing; Phenylalanine ammonia lyase; peroxidase; alpha amylase; total proteins; total phenols

Full Text:

PDF (Español)

References


Albrecht U. and Bowman K. D. 2008. Gene expression in Citrus sinensis (L.) Osbeck following infection with the bacterial pathogen Candidatus Liberibacter asiaticus causing Huanglongbing in Florida. Plant Science. 175: 291-306. http://dx.doi.org/10.1016/j.plantsci.2008.05.001

Almario, M. F., Ocampo C. y Montes de G. V. 1994. Establecimiento de un método para la determinación de la actividad enzimática de L Fenilalanina amonio liasa (PAL) en Cafeto. Revista de la Academia Colombiana de Ciencias. 19 (72): 137-140. http://www.accefyn.org.co/revista/Vol_19/72/137-140.pdf

Almeyda-León. I. H., Rocha-Peña. M. A., Piña-Razo. J. and Martínez-Soriano. J. P. 2001. The use of polymerase chain reaction and molecular hybridization for detection of phytoplasmas in different plant species in Mexico. Revista Mexicana de Fitopatología 19:1-9. http://www.redalyc.org/pdf/612/61219101.pdf

Arfaoui A., El Hadrami A., Mabrouk Y., et al. 2007. Treatment of chickpea with Rhizobium isolates enhances the expresión of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum sp. Ciceris. Plant Physiology and Biochemistry 45 (6-7): 470-479. http://dx.doi.org/10.1016/j.plaphy.2007.04.004

Aritua V, Achor D, Gmitter F. G., Albrigo G., Wang N. 2013. Transcriptional and microscopic analyses of citrus stem and root responses to Candidatus Liberibacter asiaticus infection. PLoS ONE 8: doi: 10.1371/journal.pone.0073742

Ballester A. R., Lafuente M. T., González-Candelas L. 2006. Spatial study of antioxidant enzymes, peroxidase and phenylalanine ammonia-lyase in the citrus fruit- Penicillium digitatum interaction. Postharvest Biology and Technology 39: 115-124. http://dx.doi.org/10.1016/j.postharvbio.2005.10.002

Bernal L., Martínez B. E. 2006. Una nueva visión de la degradación del almidón. Revista del Centro de Investigación. Universidad La Salle. 7(25): 77-90. http://www.redalyc.org/articulo.oa?id=34202506

Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72(1/2): 248-254. doi:10.1016/0003-2697(76)90527-3

Casado V. J. 2004. Aproximación cinética, molecular y proteómica al studio de la podredumbre apical en frutos de tomate (Lycopersicon esculentum M.): implicación de polifenol oxidase (PPO) y enzimas antioxidants. Tesis de Doctorado. Universidad de Alicante. P-113 http://hdl.handle.net/10045/9919

Chenyang H., Hsiang T., Wolyn D. 2001. Activation of defense responses to Fusarium infection in Asparagus densiflorus. European Journal of Plant Pathology 107:473-483. http://link.springer.com/article/10.1023/A:1011218304331

Christopoulos M. V. and Tsantili E. 2015. Participation of phenylalanine ammonia-lyase (PAL) in increased phenolic compounds in fresh col stressed walnut. (Juglans regia L.) Kernels. Postharvest Biology and Technology 104: 17–25 http://dx.doi.org/10.1016/j.postharvbio.2015.03.003

Díaz M., Pérez Y., Cazaña Y., Prieto M., Wencomo H. y Lugo Y. 2010. Determinación de antioxidantes enzimáticos en variedades e híbridos de Morus alba. Pastos y Forrajes 3 (3) http://scielo.sld.cu/pdf/pyf/v33n3/pyf06310.pdf

DGSV-Senasica y Mora-Aguilera G. 2012. Ficha técnica HLB Huanglongbing. 31 p. http://senasica.gob.mx/?id=4612

Etxeberria E., Gonzalez P., Achor D. and Albrigo G. 2009. Anatomical distribution of abnormally high levels of starch in HLB-affected valencia orange trees. Physiological and Molecular Plant Pathology. 74: 75-83 DOI:10.1016/j.pmpp.2009.09.004

Flores-Sánchez J. L, Mora-Aguilera G., Loeza-Kuk E, López-Arroyo. J. I., Domínguez-Monge S, Acevedo-Sánchez. G. y Robles-García P. 2015. Pérdidas en produc¬ción inducidas por Candidatus Liberibacter asiaticus en limón persa en Yucatán, México. Revista Mexicana de Fitopatología 33: 195-210. http://www.redalyc.org/articulo.oa?id=61242145005

Folimonova S. Y., Robertson C. J., Gansey S. M, Gowda S. and Dawson O. 2009. Examination of the responses of different genotype of citrus to Huanglongbing (Citrus Greening) under different conditions. Phytopathology. 99 (12):1346-1354. http://apsjournals.apsnet.org/doi/pdfplus/10.1094/PHYTO-99-12-1346

García A. H. y Vázquez D. R. 1998. Cuantificación de proteínas: una revisión. Bitácora. Biotecnología 3: 77-88. www.smbb.com.mx/revista/Revista_1998_2/bitacora.pdf

Kähkönen, M.P., Hopia A. I., Heikki J. V., Jussi P. R., Pihlaja K., Kujala T. S., and Heinonene M. 1999. Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry 47:3954-3962 http://pubs.acs.org/doi/abs/10.1021/jf990146l

Kim J.S., Sagaram U. S., Burns J.K., Li J.L., Wang N. 2009 Response of sweet orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ infection: microscopy and microarray analyses. Phytopathology 99:50–57 http://dx.doi.org/10.1094/PHYTO-99-1-0050

Koh E-J., Zhou L., Williams D. S., Park J., Ding N., Duam J-P. and Kang B-H. 2012. Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with “Candidatus Liberibacter asiaticusâ€. Protoplasma. 249: 687-697. DOI: 10.1007/s00709-011-0312-3

Lozoya S. H., Rivera H. R. y Colinas-León. M. T. 2007. Fenoles, peroxidasa y fenilalanina amonio-lyasa: su relación con la resistencia genética de clones de papa (Solanum tuberosum L.) contra el tizón tardío (Phytophthora infestans Mont. De Bary). Agrociencia 41: 479-489 https://dialnet.unirioja.es/servlet/articulo?codigo=2284649

Lu L., Wang J., Zhu R., Lu H., Zheng X. and Yu T. 2015. Transcript profiling analysis of Rhodosporidium paludigenum mediated signalling pathways and defense responses in mandarin orange. Food Chemistry. 172: 603-612. http://dx.doi.org/10.1016/j.foodchem.2014.09.097

Martinelli F., Reagan R. L., Dolan D., Fileccia V. and Dandekar A. M. 2016. Proteomic analysis highlights the role of detoxification pathways in increased tolerance to Huanglongbing disease. BMC Plant Biology 16:167 DOI 10.1186/s12870-016-0858-5

Menéndez A. O., Evangelista L. S., Arenas O. M., Bermúdez T. K., Del Villar M. A., Jiménez A. A. 2006. Cambios en la actividad de α-amilasa, pectinmetilesterasa y poligalacturonasa durante la maduración del maracuyá amarillo (Passiflora edulis Var. Flavicarpa Degener). Interciencia. 31(10): 728-733. ISSN 0378-1844

Mora-Aguilera, G., Robles-García, P., López-Arroyo, J. I., Flores-Sánchez, J., Acevedo-Sánchez G., Domínguez-Monge S., Gutiérrez-Espinosa A., Loeza-Kuk E., González-Gómez R. 2014. Situación actual y perspectivas del manejo del HLB de los cítricos. Revista Mexicana de Fitopatología. 32(2): 108-119. http://www.redalyc.org/articulo.oa?id=61243856003

Paz-Lago. D., Cabrera G., Ramírez M., Pombo R. y Gutiérrez A. 1999. Influencia de derivados de quitina en la interacción tomate-Fusarium oxysporum f.sp. licopersici a nivel de bioensayo. Cultivos Tropicales 20:59-66. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=ctrop.xis&method=post&formato=2&cantidad=1&expresion=mfn=000790

Robinson, D. S. 1991. Peroxidases and their significance in fruits and vegetables. In: Fox P. F. (ed). Food Enzimology. Vol. 1. Elsevier, London. pp: 399-426.

Rodríguez-Pedroso A. T., Ramírez-Arrebato M. A., Cárdenas-Traviéso R. M., Falcón-Rodríguez A., Bautista-Baños S. 2006. Efecto de la quitosana en la inducción de la actividad de enzimas relacionadas con la defensa y protección de plántulas de arroz (Oryza Sativa L.) contra Pyricularia grisea sacc. Revista Mexicana de Fitopatología, 24, 1; 1-7. https://www.researchgate.net/profile/Silvia_Bautista-Banos/publication/237037513_Efecto_de_la_Quitosana_en_la_Induccion_de_la_Actividad_de_Enzimas_Relacionadas_con_la_Defensa_y_Proteccion_de_Plantulas_de_Arroz_Oryza_sativa_L_contra_Pyricularia_grisea_Sacc/links/0deec51b2975c15955000000.pdf

Rüttimann, C., E. Schwember, L. Salas, D. Cullen, and R. Vicuna. 1992. Ligninolytic enzymes of the white rot basidiomycetes Phlebia breviospora and Ceriporiopsis subvermispora. Biotechnology and Applied Biochemistry 16:64–76.

Senasica-Sagarpa. 2010. Protocolo de diagnóstico de Candidatus Liberibacter spp mediante la Técnica Reacción en Cadena de la Polimerasa (PCR) en Tiempo Real. Dirección General de Sanidad Vegetal.

SIGMA-ALDRICH. 2015

http://www.sigmaaldrich.com/technicaldocuments/protocols/biology/enzymaticassayofaamylase.printerview.html

Singleton, V. L., Orthofer, R., Lamuela-Raventos R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteau reagent. Methods in Enzymology 299: 152-178 http://dx.doi.org/10.1016/S0076-6879(99)99017-1

Trotel-Aziz. P., Couderchet M., Biagianti S. and Aziz A. 2008. Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinérea. Enviromental and Experimental Botany. 64: 21-32. http://dx.doi.org/10.1016/j.envexpbot.2007.12.009

Wang C.Y. 1995. Effect of temperature preconditioning on catalase, peroxidase, and superoxide dismutase in chilling zucchini squash. Postharvest Biology and Technology 1: 33-45. doi:10.1016/0925-5214(94)00020-S

Zhong Y., Cheng C. Z., Jiang N. H., Jiang B., Zhang Y. Y., Wu B., Hu M. L., Zeng J. W., Yan H. X., Yi G. J., Zhong G. Y. 2015. Comparative transcriptome and iTraq proteome analyses of citrus root responses to Candidatus Liberibacter asiaticus infection. PLoS ONE. 10(6):e0126973. http://dx.doi.org/10.1371/journal.pone.0126973




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1608-2

Refbacks

  • There are currently no refbacks.