Wood preservatives and microbial exudates with antagonistic activity against biological agents

Vanessa Ruby García-Ortiz, Gabriela Benítez-Rocha, Mauro Martínez-Pacheco, Crisanto Velázquez-Becerra

Abstract


Wood of low durability is susceptible of deterioration by xylophages and its protection is a technological goal not reached that generates economic and material losses. Alternatives to avoid the use of toxic preservative conventional and contaminating can be established by knowledge of the bacterial microecosystem in the wood. The protection of this material is possible to obtain it with bacteria and its exudates. The purpose of this research is to highlight that the biodeterioration of low durability wood is avoidable by means of microbiological strategies relevant for the control of xylophages’ fungi. The observation is that bacteria of the genera Arthrobacter, Bacillus and Pseudomonas and their exudates are potentially protective agents that exhibit different mechanisms of action such as antagonism, parasitism and the production of exudates containing molecules with effect: antimicrobial, chelator (siderophores) that inhibit enzymes or functions and volatile compounds (dimethylhexadecylamine). Knowledge of this microbial ecosystem will facilitate the construction of an alternative to the use of conventional wood preservatives and constitutes an area of opportunity. It is evident the absence of knowledge of antagonistic bacteria of the xylophages, the management of the production and composition of their exudates and their application, thus manifesting an unexplored field in the biotechnology of the preservation of wood.


Keywords


xylophages fungi; lignin; wood; preservation; durability

Full Text:

PDF (Español)

References


A.S.T.M D-2017-81. American Society for Testing and Materials. (ASTM). 1994. D-2017-81: Standard Method of Accelerated Laboratory Natural Decay Resistance for Woods. Annual Book of ASTM Standard, Philadelphia, v. 410, p. 324-328. Disponible en línea: https://www.astm.org/Standard/standards-and-publications.html

Agboton C, Onzo A, Korie S, Tamò M and Vidal S. 2017. Spatial and temporal infestation rates of Apate terebrans (Coleoptera: Bostrichidae) in cashew orchards in Benin, West Africa. African Entomology 25(1):24-36. https://doi.org/10.4001/003.025.0024

Ahmad F, Ahmad I and Khan MS. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research 163:173-181. https://doi.org/10.1016/j.micres.2006.04.001

Arbelo A y Garbuyo E. 2012. Patologías en la construcción en madera. Estudio de caso: vivienda Punta Colorada. Disponible en línea: https://www.colibri.udelar.edu.uy/bitstream/123456789/1884/5/ARB6.pdf

Ariza Y y Sánchez L. 2012. Determinación de metabolitos secundarios a partir de Bacillus subtilis efecto biocontrolador sobre Fusarium sp. Nova 10:149-155. Disponible en línea: http://www. scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-24702012000200002&lng=en&tlng=es

Auffan M, Masion A, Labille J, Diot MA, Liu W, Olivi L, Proux O, Ziarelli F, Chaurand P, Geantetf C, Bottero JY and Rose J. 2014. Long-term aging of a CeO2 based nanocomposite used for wood protection. Environmental Pollution 188:1-7. https://doi.org/10.1016/j.envpol.2014.01.016

AWPA P5-83 1983. American Wood-Preserver´s Association (AWPA). 1983. P5-83. Standard for waterborne preservatives. In: American Wood Preservers’ Association AWPA. Pp. 1-4

Berrocal JA. 2007. Clasificación de daños producidos por agentes de biodeterioro en la madera. Revista Forestal Mesoamericana Kurú 4:54-62. Disponible en línea: http://revistas.tec.ac.cr/index.php/kuru/article/view/500/427

Bobadilla EA, Pereyra O, Silva F y Stehr AM. 2005. Durabilidad natural de la madera de dos especies aptas para la industria de la construcción. Floresta 35:419-428. http://dx.doi.org/ 10.5380/rf.v35i3.5192

Bolívar-Anillo HJ, Contreras-Zentella ML y Teherán-Sierra LG. 2016. Burkholderia tropica una bacteria con gran potencial para su uso en la agricultura. TIP 19:102-108. https://doi.org/10.1016/j.recqb.2016.06.003

Carrillo-Parra A, Hapla F, Mai C y Garza-Ocañas F. 2011. Durabilidad de la madera de Prosopis laevigata y efecto de sus extractos en hongos que degradan la madera. Madera y bosques 17:7-21. Disponible en línea: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S140504712011000100001&lng=es&tlng=en

Cely MV, Siviero MA, Emiliano J, Spago FR, Freitas VF, Barazetti AR, Goya ET, de Souza Lamberti, G, dos Santos IM, De Oliveira AG and Andrade G. 2016. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions. Frontiers in Plant Science 7:1-13. http://dx.doi.org/10.3389/fpls.2016.01708

Cheng SS, Liu JY, Hsui YR and Chang ST. 2006. Chemical polymorphism and antifungal activity of essential oils from leaves of different provenances of indigenous cinnamon (Cinnamomum osmophloeum). Bioresource Technology 97:306-312. http://dx.doi.org/10.1016/ j.biortech.2005. 02.030

Damian BLM, Martinez MRE, Salgado GR y Martinez PMM. 2010. In vitro antioomycete activity of Artemisia ludoviciana extracts against Phytophthora. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 9:136-142. ISSN: 0717-7917. Disponible en linea: http://www.redalyc.org/html/856/85612475009/

El-Tarabily KA and Sivasithamparam K. 2006. Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biology and Biochemistry 38:1505-1520. http://dx.doi.org/10.1016/j.soilbio.2005.12.017

FAO 2007. Food and Agriculture Organization of the United Nations. State of the world’s forests. Rome, Italy: FAO Forestry Department.

Findlay WPK. 1951. The value of laboratory test on wood preservatives. [S.l.]: Convention British Wood Preserving Association.

Flower CE and Gonzalez-Meler MA. 2015. Responses of temperate forest productivity to insect and pathogen disturbances. Annual Review of Plant Biology 66:547-569. Disponible en línea: http://www.annualreviews.org/doi/pdf/10.1146/annurev-arplant-043014-115540

Freeman MH, Shupe TF, Vlosky RP and Barnes HM. 2003. Past, present, and future of the wood preservation industry: wood is a renewable natural resource that typically is preservative treated to ensure structural integrity in many exterior applications. Forest Products Journal 53(10):8-16. Disponible en línea: http://go.galegroup.com/ps/i.do?id=GALE%7CA110822270&sid=googleScholar&v=2.1&it=r&linkaccess=fulltext&issn=00157473&p=AONE&sw=w&authCount=1&u=umsnh1&selfRedirect=true

González-Laredo RF, Rosales-Castro M, Rocha-Guzmán NE, Gallegos-Infante JA, Moreno-Jiménez MR y Karchesy JJ. 2015. Wood preservation using natural products. Madera y Bosques 21:63-76. http://dx.doi.org/10.21829/myb.2015.210427

Guillén F, Martínez MJ, Gutiérrez A and Del Rio JC. 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology 8:195-204. Disponible en línea: http://scielo.isciii.es/pdf/im/v8n3/07%20Martinez.pdf

Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo F and Talon M. 2001. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum 111:206-211. http://dx.doi.org/10.1034/j.1399-3054.2001.1110211.x

Haas D and Défago G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology 3:307-319. http://dx.doi.org/10.1038/nrmicro1129

Ibáñez OC, Mantero C, Rabinovich M, Cecchetto G y Cerdeiras P. 2012. Deterioro y preservación de madera. Revista Digital Universitaria 13(5):1-15 Disponible en línea: http://www.revista.unam.mx/vol.13/num5/art55/index.html

Kartal SN, Yoshimura T and Imamura Y. 2009. Modification of wood with Si compounds to limit boron leaching from treated wood and to increase termite and decay resistance. International Biodeterioration and Biodegradation 63:187-190. http://dx.doi.org/10.1016/j.ibiod.2008.08.006

Konradsen F, van der Hoek W, Cole DC, Hutchinson G, Daisley H, Singh S and Eddleston M. 2003. Reducing acute poisoning in developing countries-options for restricting the availability of pesticides. Toxicology 192(2):249-261. https://doi.org/10.1016/S0300-483X(03)00339-1

Kumar H, Dubey RC and Maheshwari DK. 2017. Seed-coating fenugreek with Burkholderia rhizobacteria enhances yield in field trials and can combat Fusarium wilt. Rhizosphere 3:92-99. https://doi.org/10.1016/j.rhisph.2017.01.004

Kumar P, Dubey RC and Maheshwari DK. 2012. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research 167:493-499. http://dx.doi.org/10.1016/j.micres.2012.05.002

Lebow S, Arango R, Woodward B, Lebow P and Ohno K. 2015. Efficacy of alternatives to zinc naphthenate for dip treatment of wood packaging materials. International Biodeterioration and Biodegradation 104:371-376. https://doi.org/10.1016/j.ibiod.2015.07.006

Liu C, Sheng J, Chen L, Zheng Y, Lee DYW, Yang Y, Xu M and Shen L. 2015. Biocontrol activity of Bacillus subtilis isolated from Agaricus bisporus mushroom compost against pathogenic fungi. Journal of Agricultural and Food Chemistry 63(26):6009-6018. https://doi.org/10.1021/acs.jafc.5b02218

Liu W, Mu W, Zhu B and Liu F. 2008. Antifungal activities and components of VOCs produced by Bacillus subtilis G8. Current Research on Bacteriology 1:28-34. Disponible en línea: http://www.docsdrive.com/pdfs/ansinet/crb/2008/28-34.pdf

Maksimov IV, Abizgil’Dina RR and Pusenkova LI. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Applied Biochemistry and Microbiology 47:333-345. http://dx.doi.org/10.1134/S0003683811040090

Manual del grupo andino para la preservación de maderas. 1988. Ed. Proyecto subregional de promoción industrial de la madera para construcción de la Junta del Acuerdo de Cartagena L.

Martinez PMM, del Rio RE, Flores GA, Martínez MRE, Ron Echeverria OA and Raya GD. 2012. Enterolobium cyclocarpum (Jacq.) Griseb.: The biotechnological profile of a tropical tree. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 11:385-399. Disponible en línea: http://www.redalyc.org/pdf/856/85624131001.pdf

Matan N and Matan N. 2008. Antifungal activities of anise oil, lime oil, and tangerine oil against molds on rubberwood (Hevea brasiliensis). International Biodeterioration and Biodegradation 62:75-78. http://dx.doi.org/10.1016/j.ibiod.2007.07.014

Moglia JG, Amórtegui IC y Giménez AM. 2015. Ocurrencia de la mancha roja en el leño de Aspidosperma quebracho-blanco. Revista de Ciencias Forestales 23:1-2. Disponible en línea: http://www.redalyc.org/pdf/481/48145593003.pdf

Naing KW, Anees M, Kim SJ, Nam Y, Kim YC and Kim KY. 2014. Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Annals of Microbiology 64:55-63. http://dx.doi.org/10.1007/s13213-013-0632-y

Nascimento MS, Santana ALBD, Maranhão CA, Oliveira LS and Bieber L. 2013. Phenolic extractives and natural resistance of wood. Pp:349-370. In Biodegradation-Life of Science. http://dx.doi.org/10.5772/56358

NMX-C-222-1983. Norma Mexicana. “Industria de la Construcción-Vivienda de Madera Prevención de Ataque por Termitas-Especificaciones”.

NMX-C-239-1985. Norma Mexicana para la “Calificación y clasificación de la madera de pino para uso estructural”.

Orozco-Mosqueda M, Valencia-Cantero E, López-Albarrán P, Martínez-Pacheco M y Velázquez-Becerra C. 2015. La bacteria Arthrobacter agilis UMCV2 y diversas aminas inhiben el crecimiento in vitro de hongos destructores de madera. Revista Argentina de Microbiología 47:219-228. http://dx.doi.org/10.1016/j.ram.2015.06.005

Patel N, Oudemans PV, Hillman BI and Kobayashi DY. 2013. Use of the tetrazolium salt MTT to measure cell viability effects of the bacterial antagonist Lysobacter enzymogenes on the filamentous fungus Cryphonectria parasitica. Antonie Van Leeuwenhoek 103(6):1271-1280. https://doi.org/10.1007/s10482-013-9907-3

Pedraza RO. 2015. Siderophores production by Azospirillum: biological importance, assessing methods and biocontrol activity. In Handbook for Azospirillum. Pp. 251-262. Springer International Publishing. 514p. http://dx.doi.org/10.1007/978-3-319-06542-7_14

Radzki W, Mañero FG, Algar E, García JL, García-Villaraco A and Solano BR. 2013. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104(3):321-330. https://doi.org/10.1007/s10482-013-9954-9

Ramírez-López CB, García-Sánchez E, Martínez-Muñoz RE, Del Río RE y Martínez-Pacheco MM. 2016. Chemical composition of the essential oil from Ageratina jocotepecana and its repellent effect on drywood termite Incisitermes marginipennis. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 15(1):53-60. Disponible en línea: http://www.redalyc.org/articulo.oa?id=85643330005

Raya-González D, Martínez-Muñoz RE, Ron-Echeverría OA, Flores-García A, Macías-Rodríguez LI and Martínez-Pacheco MM. 2013. Dissuasive effect of an extract aqueous from Enterolobium cyclocarpum (Jacq) Griseb on the drywood termite Incisitermes marginipennis (Isoptera:Kalotermitidae) (Latreille). EJFA 25:524-530. http://dx.doi.org/10.9755/ejfa.v25i7.15987

Saha M, Sarkar S, Sarkar B, Sharma B K, Bhattacharjee S and Tribedi P. 2016. Microbial siderophores and their potential applications: a review. Environmental Science and Pollution Research 23(5):3984-3999. https://doi.org/10.1007/s11356-015-4294-0

Schmidt O. 2007. Indoor wood-decay basidiomycetes: damage, causal fungi, physiology, identification and characterization, prevention and control. Mycological Progress 6:261-279. http://dx.doi.org/10.1007/s11557-007-0534-0

Schwarze FWMR. 2007. Wood decay under the microscope. Fungal Biology Reviews 21(4):133-170. https://doi.org/10.1016/j.fbr.2007.09.001

Singh AP and Singh T. 2014. Biotechnological applications of wood-rotting fungi: A review. Biomass and Bioenergy 62:198-206. https://doi.org/10.1016/j.biombioe.2013.12.013

Singh AP, Kim YS and Singh T. 2016. Bacterial degradation of wood. Secondary Xylem Biology: Origins, Functions, and Applications 9:169-190. https://doi.org/10.1016/B978-0-12-802185-9.00009-7

Singh T and Singh AP. 2012. A review on natural products as wood protectant. Wood Science and Technology 46:851-870. http://dx.doi.org/10.1007/s00226-011-0448-5

Sivasakthi S, Usharani G and Saranraj P. 2014. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. African Journal of Agricultural Research 9(16):1265-1277. https://dx.doi.org/10.5897/AJAR2013.7914

Stirling R, Daniels CR, Clark JE and Morris PI. 2007. Methods for determining the role of extractives in the natural durability of western red cedar. International Research Group on Wood Protection. Doc No. IRG-WP 07e20356.

Stork NE, McBroom J, Gely C and Hamilton AJ. 2015. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proceedings of the National Academy of Sciences 112(24):7519-7523. http://dx.doi.org/10.1073/pnas.1502408112

Subramanian J, Ramesh T and Kalaiselvam M. 2014. Fungal laccases-properties and applications: a review. International Journal of Pharmaceutical and Biological Archive 5(2):8-16. Disponible en línea: http://www.ijpba.info/ijpba/index.php/ijpba/article/viewFile/1237/881

Sunar K, Dey P, Chakraborty U and Chakraborty B. 2013. Biocontrol efficacy and plant growth promoting activity of Bacillus altitudinis isolated from Darjeeling hills, India. Journal of Basic Microbiology 55:91-104. http://dx.doi.org/10.1002/jobm.201300227

Tariq M, Noman M, Ahmed T, Hameed A, Manzoor N and Zafar M. 2017. Antagonistic features displayed by Plant Growth Promoting Rhizobacteria (PGPR): A Review. Journal of Plant Science and Phytopathology 1:38-43. Disponible en línea: https://www.heighpubs.org/jpsp/pdf/jpsp-aid1004.pdf

Tascioglu C, Yalcin M, de Troya T y Sivrikaya H. 2012. Termiticidal properties of some wood and bark extracts used as wood preservatives. BioResources 7:2960-2969. Disponible en línea: http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_07_3_2960_Tascioglu_YTS_Termiticidal_Wood_Bark_Extracts

Tascioglu C, Yalcin M, Sen S and Akcay C. 2013. Antifungal properties of some plant extracts used as wood preservatives. International Biodeterioration and Biodegradation 85:23-28. https://doi.org/10.1016/j.ibiod.2013.06.004

Tejera B, Heydrich M y Rojas MM. 2012. Antagonismo de Bacillus spp. frente a hongos fitopatógenos del cultivo del arroz (Oryza sativa L.). Revista de Protección Vegetal 27:117-122. Disponible en línea: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522012000200008

Ulyshen MD. 2015. Insect?mediated nitrogen dynamics in decomposing wood. Ecological Entomology 40:97-112. https://doi.org/10.1111/een.12176

Velázquez-Becerra C, Macías-Rodríguez LI, López-Bucio J, Flores-Cortez I, Santoyo G, Hernández-Soberano C and Valencia-Cantero E. 2013. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma 25:1251-1262. http://dx.doi.org/10.1007/s00709-013-0506-y

Veronovski N, Verhovšek D and Godnjavec J. 2013. The influence of surface-treated nano-TiO2 (rutile) incorporation in water-based acrylic coatings on wood protection. Wood science and technology 47(2):317-328. http://dx.doi.org/10.1007/s00226-012-0498-3

Wan M, Li G, Zhang J, Jiang D and Huang HC. 2008. Effect of volatile substances of Streptomycesplatensis F-1 on control of plant fungal diseases. Biological Control 46:552-559. http://dx.doi.org/10.1016/j.biocontrol.2008.05.015

Widmer TL. 2014. Screening Trichoderma species for biological control activity against Phytophthora ramorum in soil. Biological Control 79:43-48. https://doi.org/10.1016/j.biocontrol.2014.08.003

Yang VW and Clausen CA. 2007. Antifungal effect of essential oils on southern yellow pine. International Biodeterioration and Biodegradation 59:302-306. https://doi.org/10.1016/j.ibiod.2006.09.004

Zanni E. 2004. Patología de madera. Degradación y Rehabilitación de Estructuras de Madera. Primera Edición. Editorial Brujas. Córdoba, Argentina. 244p.

Zanni E. 2008. Patología de la construcción y restauro de obras de arquitectura. Primera Edición. Editorial Brujas. Córdoba, Argentina. 300p.

Zavattieri MA, Ragonezi C and Klimaszewska K. 2016. Adventitious rooting of conifers: influence of biological factors. Trees 30(4):1021-1032. https://doi.org/10.1007/s00468-016-1412-7

Zhao LJ, Yang XN, Li XY, Wei MU and Feng LIU. 2011. Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa strain BMP-11. Agricultural Sciences in China 10:728-736. http://dx.doi.org/10.1016/S1671-2927(11)60056-4

Zou CS, Mo MH, Gu YQ, Zhou JP and Zhang KQ. 2007. Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biology and Biochemistry 39:2371-2379. http://dx.doi.org/10.1016/j.soilbio.2007.04.009




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1704-2

Refbacks

  • There are currently no refbacks.