Phosphites as alternative for the management of phytopathological problems

Moisés Gilberto Yáñez-Juárez, Carlos Alfonso López-Orona, Felipe Ayala-Tafoya, Leopoldo Partida-Ruvalcaba, Teresa de Jesús Velázquez-Alcaraz, Raymundo Medina-López

Abstract


Phosphites are compounds derived from phosphorous acid used as an alternative for the control of phytoparasitic organisms and their effectiveness has been tested against protozoa, oomycetes, fungi, bacteria and nematodes; however, compared to conventional synthesized fungicides, phosphites are generally less effective at reducing damage by phytopathogens. The phosphite ion is easily transported in the plants via xylem and phloem, so it has been used in foliar application, drench of plant root and neck, injection trunk, through drip irrigation mixed in the nutrient solution in hydroponics, seed treatment, aerial application in low volume, or as treatment in immersion of seeds and fruits. The mechanisms of action involved in the prophylactic effects of phosphites are diverse and include the stimulation of biochemical and structural defense mechanisms in plants and direct action that restricts the growth, development and reproduction of phytopathogenic organisms.


Keywords


potassium phosphite; biostimulant; control of phytopathogens

Full Text:

PDF (Español)

References


Abbasi PA and Lazarovits G. 2006. Seed treatment with phosphonate (AG3) suppresses Pythium damping-off of cucumber seedlings. Plant Disease 90:459-464. https://doi.org/10.1094/PD-90-0459

Achary VMM, Ram B, Manna M, Datta D, Bhatt A, Reddy M and Agrawal PR. 2017. Phosphite: a novel P fertilizer for weed management and pathogen control. Plant Biotechnology Journal 1-16. https://doi.org/10.1111/pbi.12803

A?imovi? SG, Zeng Q, McGhee GC, Sundin GW and Wise JC. 2015. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes. Front. Plant Science 6:1-6. https://doi.org/10.3389/fpls.2015.00016

A?imovi? SG, VanWoerkom AH, Garavaglia T, Vandervoort C, Sundin GW and Wise JC. 2016. Seasonal and cross-seasonal timing of fungicide trunk injections in apple trees to optimize management of apple scab. Plant Disease 100:1606-1616. https://doi.org/10.1094/PDIS-09-15-1061-RE

Akinsanmi OA and Drenth A. 2013. Phosphite and metalaxyl rejuvenate macadamia trees in decline caused by Phytophthora cinnamomi. Crop Protection 53:29-36. https://doi.org/10.1016/j.cropro.2013.06.007

Alexandersson E, Mulugeta T, Lankinen Å, Liljeroth E and Andreasson E. 2016. Plant resistance inducers against pathogens in Solanaceae species-from molecular mechanisms to field application. International Journal Molecular Sciences 17:1-25. https://doi.org/10.3390/ijms17101673

Amiri A and Bompeix G. 2011. Control of Penicillium expansum with potassium phosphite and heat treatment. Crop Protection 30:222-227. https://doi.org/10.1016/j.cropro.2010.10.010

Anderson JM, Pegg KG, Scott C and Drenth A. 2012. Phosphonate applied as a pre-plant dip controls Phytophthora cinnamomi root and heart rot in susceptible pineapple hybrids. Australasian Plant Pathology 41:59-68. https://doi.org/10.1007/s13313-011-0090-6

Araujo L, Valdebenito-Sanhueza RM and Stadnik MJ. 2010. Avaliação de formulações de fosfito de potássio sobre Colletotrichum gloeosporioides in vitro e no controle pósinfeccional da mancha foliar de Glomerella em macieira. Tropical Plant Pathology 35:54-59. http://www.scielo.br/pdf/tpp/v35n1/a10v35n1

Becót S, Pajot E, Le Corred D, Monot C and Silué D. 2000. Phytogard (K2HPO3) induces localized resistance in cauliflower to downy mildew of crucifers. Crop Protection 19:417-425. https://doi.org/10.1016/S0261-2194(00)00034-X

Bock CH, Brenneman TB, Hotchkiss MW and Wood BW. 2012. Evaluation of a phosphite fungicide to control pecan scab in the southeastern USA. Crop Protection 36:58-64. https://doi.org/10.1016/j.cropro.2012.01.009

Borin RC, Possenti JC, Rey MS, Bernardi C and Mazaro SM. 2017. Phosphites associated to fungicides for diseases control and sanity in corn seeds. Applied Research and Agrotechnology 10:83-92. https://doi.org/10.5935/PAeT.V10.N1.09

Borza T, Peters RD, Wu Y, Schofield A, Rand J, Ganga Z, Al-Mughrabi KI, Coffin RH and Wang-Pruski G. 2017. Phosphite uptake and distribution in potato tubers following foliar and postharvest applications of phosphite-based fungicides for late blight control. Annals of Applied Biology 1:127-139. https://doi.org/10.1111/aab.12322

Borza T, Schofield A, Sakthivel G, Bergese J, Gao X, Rand J and Wang-Pruski G. 2014. Ion chromatography analysis of phosphite uptake and translocation by potato plants: dose-dependent uptake and inhibition of Phytophthora infestans development. Crop Protection 56:74-81. https://doi.org/10.1016/j.cropro.2013.10.024

Cerioni L, Rapisarda VA, Doctor J, Fikkert S, Ruiz T, Fassel R and Smilanick JL. 2013. Use of phosphite salts in laboratory and semicommercial tests to control citrus postharvest decay. Plant Disease 97:201-212. http://dx.doi.org/10.1094/PDIS-03-12-0299-RE

Cook PJ, Landschoot PJ and Schlossberg MJ. 2009. Inhibition of Pythium spp. and suppression of Pythium blight of turfgrasses with phosphonate fungicides. Plant Disease 93:809-814. https://doi.org/10.1094/PDIS-93-8-0809

Costa BHG, De Resende MLV, Ribeiro PM, Mathioni SM, Padua MS and Da Silva MBJ. 2014. Suppression of rust and brown eye spot diseases on coffee by phosphites and by-products of coffee and citrus industries. Journal of Phytopathology 162:635-642. https://doi.org/10.1111/jph.12237

Dalio RJD, Fleischmann F, Humez M and Osswald W. 2014. Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition. PLoS One 9, e87860. https://doi.org/10.1371/journal.pone.0087860

Daniel R and Guest D. 2006. Defence responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana. Physiologycal and Molecular Plant Pathology 67:194-201. https://doi.org/10.1016/j.pmpp.2006.01.003

Davis AJ and Grant GR. 1996. The effect of phosphonate on the sporulation of Fusarium oxysporum f. sp. cubense. Australasian Plant Pathology 25:31-35. https://doi.org/10.1071/AP96007

Dias-Arieira CRP, Marini PM, Fontana LF, Roldi M and Silva TRB. 2012. Effect of Azospirillum brasilense, Stimulate® and potassium phosphite to control Pratylenchus brachyurus in soybean and maize. Nematropica 42:170-175. http://journals.fcla.edu/nematropica/article/view/79597/76915

Deliopoulos T, Kettlewell PS and Hare MC. 2010. Fungal disease suppression by inorganic salts: a review. Crop Protection 29:1059-1075. https://doi.org/10.1016/j.cropro.2010.05.011

Eshraghi L, Anderson J, Aryamanesh N, Shearer B, McComb J, Hardy GES and O’Brien PA. 2011. Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathology 60:1086-1095. https://doi.org/10.1111/j.1365-3059.2011.02471.x

Förster H, Adaskaveg JE, Kim DH and Stanghellini ME. 1998. Effect of phosphite on tomato and pepper plants and on susceptibility of pepper to Phytophthora root and crown rot in hydroponic culture. Plant Disease 82:1165-1170. https://doi.org/10.1094/PDIS.1998.82.10.1165

Gómez-Merino FC and Trejo-Téllez LI. 2015. Biostimulant activity of phosphite in horticulture. Scientia Horticulturae 196:82-90. https://doi.org/10.1016/j.scienta.2015.09.035

Hardy GES, Barrett S and Shearer BL. 2001. The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australians Plant Pathology 30:133-139. https://doi.org/10.1071/AP01012

Hofgaard IS, Ergon A, Henriksen B and Tronsmo AM. 2010. The effect of potential resistance inducers on development of Microdochium majus and Fusarium culmorum in winter wheat. European Journal of Plant Pathology 128:269-281. https://doi.org/10.1007/s10658-010-9662-5

Hukkanen A, Kostamo K, Kärenlampi S and Kokko H. 2008. Impact of agrochemicals on Peronospora sparsa and phenolic profiles in three Rubus arcticus cultivars. Journal of Agricultural and Food Chemistry 56:1008-1016. https://doi.org/10.1021/jf072973p

Jackson TJ, Burgess T, Colquhoun I and Hardy GESTJ. 2000. Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathology 49:147-154. https://doi.org/10.1046/j.1365-3059.2000.00422.x

Kammerich J, Beckmann S, Scharafat I and Ludwig-Müller J. 2014. Suppression of the clubroot pathogen Plasmodiophora brassicae by plant growth promoting formulations in roots of two Brassica species. Plant Pathology 63:846-857. https://doi.org/10.1111/ppa.12148

King M, Reeve W, Van der Hoek M.B, Williams N, McComb J, O’Brien PA and Hardy GE. 2010. Defining the phosphite-regulated transcriptome of the plant pathogen Phytophthora cinnamomi. Mol Genet Genomics 284:425-35. https://doi.org/10.1007/s00438-010-0579-7

Kromann P, Pérez WG, Taipe A, Schulte-Geldermann E, Sharma BP, Andrade-Piedra JL and Forbes GA. 2012. Use of phosphonate to manage foliar potato late blight in developing countries. Plant Disease. 96:1008-1015. https://apsjournals.apsnet.org/doi/pdf/10.1094/PDIS-12-11-1029-RE

Lai T, Wang Y, Fan Y, Zhou Y, Bao Y and Zhou T. 2017. The response of growth and patulin production of postharvest pathogen Penicillium expansum to exogenous potassium phosphite treatment. International Journal of Food Microbiology 244:1-10. https://doi.org/10.1016/j.ijfoodmicro.2016.12.017

Liljeroth E, Lankinen Å, Wiik L, Burra DD, Alexandersson E and Andreasson E. 2016. Potassium phosphite combined with reduced doses of fungicides provides efficient protection against potato late blight in large-scale field trials. Crop Protection 86:42-55. https://doi.org/10.1016/j.cropro.2016.04.003

Lobato MC, Machinandierena MF, Tambascio C, Dosio GAA, Caldiz DO, Dalio GR, Andreu AB and Olivieri FP. 2011. Effect of foliar applications of phosphite on post-harvest potato tubers. European Journal Plant Pathology 130:155-163. https://doi.org/10.1007/s10658-011-9741-2

Lobato MC, Olivieri FP, González AEA, Wolski EA, Daleo GR, Caldiz DO and Andreu AB. 2008. Phosphite compounds reduce disease severity in potato seed tubers and foliage. European Journal Plant Pathology 122:349-358. https://doi.org/10.1007/s10658-008-9299-9

Lobato MC, Olivieri FP, Daleo GR and Andreu AB. 2010. Antimicrobial activity of phosphites against different potato pathogens. Journal Plant Disease Protection 3:102-109. https://doi.org/10.1007/BF03356343

Lovatt CJ and Mikkelsen RL. 2006. Phosphite fertilizers: what are they? Can you use them? What can they do? Better Crops 90:11-13. https://www.ipni.net/ppiweb/bcrops.nsf/$webindex/3EF696A6E5851563852572140026EACD/$file/06-4p11.pdf

MacKenzie SJ, Mertely JC and Peres NA. 2009. Curative and protectant activity of fungicides for control of crown rot of strawberry caused by Colletotrichum gloeosporioides. Plant Disease 93:815-820. https://doi.org/10.1094/PDIS-93-8-0815

Manna M, Achary VMM, Islam T, Agrawal PK and Reddy MK. 2016. The development of a phosphite-mediated fertilization and weed control system for rice. Scientific Reports 6:1-13. https://doi.org/10.1038/srep24941

McDonald AE, Grant BR and Plaxton WC. 2001. Phosphite (phosphorous acid): its relevance in the environment and agriculture and influence on plant phosphate starvation response. Journal Plant Nutrition 24:1505-1519. http://dx.doi.org/10.1081/PLN-100106017

Méndez LW, Arauz LF y Ríos R. 2010. Evaluación de fungicidas convencionales e inductores de resistencia para el combate de mildiú velloso (Pseudoperonospora cubensis) en melón (Cucumis melo). Agronomía Costarricense 34:153-164. https://revistas.ucr.ac.cr/index.php/agrocost/article/view/3629/3534

Meyer MD and Hausbeck MK. 2013. Using soil-applied fungicides to manage Phytophthora crown and root rot on summer squash. Plant Disease 97:107-112. https://doi.org/10.1094/PDIS-12-11-1071-RE

Mofidnakhaei M, Abdossi V, Dehestani A, Pirdashti H and Babaeizad V. 2016. Potassium phosphite affects growth, antioxidant enzymes activity and alleviates disease damage in cucumber plants inoculated with Pythium ultimum. Archives of Phytopathology and Plant Protection 49:207-221. http://dx.doi.org/10.1080/03235408.2016.1180924

Mogollón AM y Castaño J. 2012. Evaluación in vitro de inductores de resistencia sobre Mycosphaerella fijiensis Morelet. Revista Facultad Nacional de Agronomía 65:6327-6336. http://www.redalyc.org/articulo.oa?id=179924340004

Monchiero M, Lodovica MG, Pugliese M, Spadaro D and Garibaldi A. 2015. Efficacy of different chemical and biological products in the control of Pseudomonas syringae pv. actinidiae on kiwifruit. Australasian Plant Pathology 44:13-23. https://doi.org/10.1007/s13313-014-0328-1

Monsalve V, Viteri RSE, Rubio CNJ and Tovar DF. 2012. Efectos del fosfito de potasio en combinación con el fungicida metalaxyl + mancozeb en el control de mildeo velloso (Peronospora destructor Berk) en cebolla de bulbo (Allium cepa L.). Revista Facultad Nacional de Agronomía-Medellin 65:6317-6325. http://www.redalyc.org/articulo.oa?id=179924340003

Nascimento KJT, Araujo L, Resende RS, Schurt DA, Silva WL and Rodrigues FA. 2016. Silicon, acibenzolar-S-methyl and potassium phosphite in the control of brown spot in rice. Bragantia 75:212-221. http://dx.doi.org/10.1590/1678-4499.281

Ogoshi C, de Abreu MS, da Silva BM, Neto HS, Júnior PMR and de Resende MLV. 2013. Potassium phosphite: a promising product in the management of diseases caused by Colletotrichum gloeosporioides in coffee plants. Bioscience Journal 29:1558-1565. http://www.seer.ufu.br/index.php/biosciencejournal/article/view/17148/13302

Oka Y, Tkachi N and Mor M. 2007. Phosphite inhibits development of the nematodes Heterodera avenae and Meloidogyne marylandi in cereals. Phytopathology 97:396-404. https://doi.org/10.1094/PHYTO-97-4-0396

Olivieri FP, Feldman ML, Machinandiarena MF, Lobato MC, Caldiz DO, Dalo GR and Andreu AB. 2012. Phosphite applications induce molecular modifications in potato tuber periderm and cortex that enhance resistance to pathogens. Crop Protection 32:1-6. https://doi.org/10.1016/j.cropro.2011.08.025

Oyarburo NS, Machinandiarena MF, Feldman ML, Daleo GR, Andreu AB and Olivieri FP. 2015. Potassium phosphite increases tolerance to UV-B in potato. Plant Physiology and Biochemistry 88:1-8. https://doi.org/10.1016/j.plaphy.2015.01.003

Pagani APS, Dianese AC and Café-Filho AC. 2014. Management of wheat blast with synthetic fungicides, partial resistance and silicate and phosphite minerals. Phytoparasitica 42:609-617. https://doi.org/10.1007/s12600-014-0401-x

Percival GC, Noviss K and Haynes I. 2009. Field evaluation of systemic inducing resistance chemicals at different growth stages for the control of apple (Venturia inaequalis) and pear (Venturia pirina) scab. Crop Protection 28:629-633. https://doi.org/10.1016/j.cropro.2009.03.010

Pilbeam RA, Howard K, Shearer BL and Hardy GEJ. 2011. Phosphite stimulated histological responses of Eucalyptus marginata to infection by Phytophthora cinnamomi. Tree 25:1121-1131. https://doi.org/10.1007/s00468-011-0587-1

Pinto KM, Do Nascimento C, Gomes EC, Da Silva HF and Miranda J. 2012. Efficiency of resistance elicitors in the management of grapevine downy mildew Plasmopara viticola: epidemiological, biochemical and economic aspects. European Journal Plant Pathology 134:745-754. https://doi.org/10.1007/s10658-012-0050-1

Puerari HH, Dias-Arieira CR, Cardoso MR, Hernandes I and Brito ODC. 2015. Resistance inducers in the control of root lesion nematodes in resistant and susceptible cultivars of maize. Phytoparasitica 43:383-389. https://doi.org/10.1007/s12600-014-0447-9

Quintero-Vargas C y Castaño-Zapata J. 2012. Evaluación de inductores de resistencia para el manejo de nematodos fitoparásitos en plántulas de plátano. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 36:575-586. http://www.scielo.org.co/pdf/racefn/v36n141/v36n141a08.pdf

Rebollar-Alviter A, Wilson LL, Madden LV and Ellis MA. 2010. A comparative evaluation of post-infection efficacy of mefenoxam and potassium phosphite with protectant efficacy of azoxystrobin and potassium phosphite for controlling leather rot of strawberry caused by Phytophthora cactorum. Crop Protection 29:349-353. https://doi.org/10.1016/j.cropro.2009.12.009

Reuveni M, Sheglov D and Cohen Y. 2003. Control of moldy-core decay in apple fruits by ?-aminobutyric acids and potassium phosphites. Plant Disease 87:933-936. https://doi.org/10.1094/PDIS.2003.87.8.933

Silva OC, Santos HAA, Dalla-Pria M and May-De Mio LL. 2011. Potassium phosphite for control of downy mildew of soybean. Crop Protection 30:598-604. https://doi.org/10.1016/j.cropro.2011.02.015

Smillie R, Grant BR and Guest D. 1989. The mode of action of phosphite: evidence for both direct and indirect modes of action on three Phytophthora spp. in plants. Phytopathology 79:921-926. https://doi.org/10.1094/Phyto-79-921

Tkaczyk M, Kubiak KA, Sawicki J, Nowakowska JA and Oszako T. 2016. The use of phosphates in forestry. Forest Research Papers 77:76-81. https://doi.org/10.1515/frp-2016-0009

Vawdrey LL and Westerhuis D. 2007. Field and glasshouse evaluations of metalaxyl, potassium phosphonate, acibenzolar and tea tree oil in managing Phytophthora root rot of papaya in far northern Queensland, Australia. Australasian Plant Pathology 36:270-276. https://doi.org/10.1071/AP07016

Wilkinson CJ, Holmes JM, Tynan KM, Colquhoun IJ, Mccomb JA, Hardy GESTJ and Dell B. 2001. Ability of phosphite applied in a glasshouse trial to control Phytophthora cinnamomi in five plant species native to Western Australia. Australasian Plant Pathology 30:343-351. https://doi.org/10.1071/AP01055

Wong MA, McComb BJ, Hardy BGEJ and O’Brien PA. 2009. Phosphite induces expression of a putative proteophosphoglycan gene in Phytophthora cinnamomi. Australasian Plant Pathology 38:235-241. https://doi.org/10.1071/AP08101

Yáñez JMG, Ayala TF, Partida RL, Velázquez AT, Godoy ATP y Díaz VT. 2014. Efecto de bicarbonatos en el control de cenicilla (Oidium sp.) en pepino (Cucumis sativus L.). Revista Mexicana de Ciencias Agrícolas 5:991-1000. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342014000600007

Yáñez JMG, León DJF, Godoy ATP, Gastélum LR, López MM, Cruz OJE y Cervantes DL. 2012. Alternativas para el control de la cenicilla (Oidium sp.) en pepino (Cucumis sativus L.). Revista Mexicana de Ciencias Agrícolas 3:259-270. http://www.redalyc.org/articulo.oa?id=263123201004




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1710-7

Refbacks

  • There are currently no refbacks.