Effect of biocontrol and germinative inhibition of Bacillus spp. on zoospores of Phytophthora capsici
Abstract
The oomycete Phytophthora capsici is a pathogen of economic importance in tomato (Solanum lycopersicum L.) and chili (Capsicum annuum L.) crops. The objective of this work was to evaluate the effect of germinative inhibition and biocontrol of two isolates of the genus Bacillus on zoospores of P. capsici. The isolates were identified as Bacillus amyloliquefaciens and B. thuringiensis. In the in vitro tests of the germination of zoospores of P. capsici, the percentages of inhibition with cell suspension of B. amyloliquefaciens and B. thuringiensis were significant with 88.15 and 97.05% respectively, while, the filtrates showed 24.30% of inhibition. In the in vivo study, tomato seedlings treated with cell suspension of B. amyloliquefaciens and B. thuringiensis, showed lower severity of the disease caused by P. capsici with 22.22 and 27.78% respectively, compared to that observed in chili seedlings where values of 61% were obtained. The tomato and chili seedlings treated with bacterial filtrates showed up to 94% severity. With cell suspension of B. amyloliquefaciens and B. thuringiensis the efficiency of biocontrol was 72 and 77% respectively, which show that these microorganisms can be used as biocontrol agents of P. capsici in tomato and chili plants.
Keywords
Full Text:
PDF (Español)References
Abdallah RAB, Stedel C, Garagounis C, Nefzi A, Jabnoun-Khiareddine H, Papadopoulou KK and Daami-Remadi M. 2017. Involment of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of Fusarium wilt by endophytic Bacillus spp. in tomato. Crop Protection 99:45-58. http://dx.doi.org/10.1016/j.cropro.2017.05.008
Agrios GN. 2005. Plant Pathology. Fifth Edition. Elsevier. Academic Press. USA. Pp. 305-592.
Altschul S, Gish W, Miller W, Myers EW and Lipman DJ. 1990. Basic Local Alignment Search Tool. Journal of Molecular Biology 215:403-40. Disponible línea: https://www.biostat.wisc.edu/bmi576/papers/blast.pdf
Bae SJ, Mohanta TK, Chung JY, Ryu M, Park G, Shim S, Hong SB, Seo H, Bae DW, Bae I, Kim JJ and Bae H. 2016. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biological Control 92:128-138. http://dx.doi.org/10.1016/j.biocontrol.2015.10.005
Castillo C, Sosa B y Scorza J. 2004. Evaluación de la termorresistencia en metabolitos antifúngicos producidos por esporulados del género Bacillus. Revista de la Sociedad Venezolana de Microbiología [online]. Vol.24, n.1-2 [citado 2017-09-14], pp. 65-67. Disponible en línea: http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S1315-25562004000100011&lng=es&tlng=es
Chen JT, Su HJ and Huang JW. 2012. Isolation and identification of secondary metabolites of Clitocybe nuda responsible for inhibition of zoospore germination of Phytophthora capsici. Journal of Agricultural and Food Chemistry 60:7341-7344. http://dx.doi: 10.1021/jf301570y
Chen X, Zhang Y, Fu X, Li Y and Wang Q. 2016 a. Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biology and Technology 115:113-121. https://doi.org/10.1016/j.postharvbio.2015.12.021
Chen YY, Chen PCh and Tsay TT. 2016 b. The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici. Biological Control 98:34-42. http://dx.doi.org/10.1016/j.biocontrol.2016.02.011
Deepak R and Jayapradha R. 2015. Lipopeptide biosurfactant from Bacillus thuringiensis pak 2310: A potential antagonist against Fusarium oxysporum. Journal de Mycologie Médicale 25:15-24. https://doi.org/10.1016/j.mycmed.2014.10.011
Erwin D and Ribeiro O. 1996. Phytophthora Diseases Worldwide. Minnesota. The American Phytopathological Society. 562 p.
González ChMM, Villordo PE, Pons HJL, Delgadillo SF, Paredes MR, Godoy HH, Anaya LJL, Gámez VFP, Medina CT, Rodríguez GR, Ruiz CE, Ruiz LA, Cárdenas BR, Cárdenas AJR, Torres PI, Rendón PE, Martínez SJ, Mojarro DF, Villaseñor EOM y Guerrero ABZ. 2009. Guía para el manejo de la marchitez del chile en Guanajuato. Primera Edición. Prometeo Editores, S. A. de C. V. CEPROCH- Guanajuato. México, D. F. 34 pp.
Gómez RO, Corona TT and Aguilar RVH. 2017. Differential response of pepper (Capsicum annuum L.) lines to Phytophthora capsici and root-knot nematodes. Crop Protection 92:148-152. http://dx.doi.org/10.1016/j.cropro.2016.10.023
Hansen EM, Reeser PW and Sutton W. 2012. Phytophthora beyond agriculture. Annual Review of Phytopathology 50:359-378. https://doi.org/10.1146/annurev-phyto-081211-172946
Hausbeck MK and Lamour KH. 2004. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Disease 88:1292-1303. http://dx.doi.org/10.1094/PDIS.2004.88.12.1292
Heddi A, Grenier AM, Khatchadourian C, Charles H and Nardon P. 1999. Four intracellular genomes direct weevil biology: Nuclear, mitochondrial, principal endosymbiont and Wolbachia. Proceedings of the National Academy of Sciences of the United States of America 96:6814-6819. Disponible en línea: http://www.pnas.org/content/96/12/6814.full
Kang SW and Kim SW. 2004. New antifungal activity of Penicillium acid against Phytophthora species. Biotechnology Letters 26:695-698. https://doi.org/10.1023/B:BILE.0000024090.96693.a4
Khan MA, Cheng Z, Xiao X, Khan AR and Ahmed SS. 2011. Ultrastructural studies of the inhibition effect against Phytophthora capsici of root exudates collected from two garlic cultivars along with their qualitative analysis. Crop Protection 30:1149-1155. https://doi.org/10.1016/j.cropro.2011.04.013
Kim HS, Noh S and Park Y. 2017. Enhancement of Bacillus thuringiensis Cry1 Ac and Cry1 Ca toxicity against Spodoptera exigua (Hubner) by suppression of a chitin synthase B gene in midgut. Journal of Asia-Pacific Entomology 20:199-205. DOI: 10.1016/j.aspen. 2016.12.015
Ko WH, Tsou YJ, Lin MJ and Chern LL. 2010. Activity and characterization of secondary metabolites produced by a new microorganism for control of plant diseases. New Biotechnology 27:397-402. DOI: 10.1016/j.nbt.2010.05.014
Lamour KH, Stam R, Jupe J and Huitema E. 2012. The oomycete broad-host-range pathogen Phytophthora capsici. Molecular Plant Pathology 13:329-337. DOI: 10.1111/j.1364-3703.2011.00754.x
Li CH, Shi L, Han Q, Hu HL, Zhao MW, Tang CM and Li SP. 2012. Biocontrol of verticillium wilt and colonization of cotton plants by an endophytic bacterial isolate. Journal of Applied Microbiology 113:641-651. DOI: 10.1111/j.1365-2672.2012.05371.x
Masmoudi F, Khedher SB, Kamoun A, Zouari N, Tounsi S and Trigui M. 2017. Combinatorial effect of mutagenesis and medium component optimization on Bacillus amyloliquefaciens antifungal activity andefficacy in eradicating Botrytis cinerea. Microbiological Research. 197:29-38. http://dx.doi.org/10.1016/j.micres.2017.01.001
McLaughlin RW, Chen M, Zheng J and Wang D. 2012. Analysis of the bacterial diversity in the fecal material of the endangered Yangtze finless porpoise, Neophocaena phocaenoides asiaeorientalis. Molecular Biology Reports 39(5):5669-5676. DOI: 10.1007/s11033-011-1375-0
Mojica-Marín V, Luna-Olvera HA, Sandoval-Coronado CF, Pereyra-Aferez B, Mrales-Ramos LH, Gonzalez-Aguilar NA, Hernandez-Luna CE y Alvarado-Gomez OG. 2009. Control biológico de la marchitez del chile (Capsicum annuum L.) por Bacillus thuringiensis. Revista Internacional de Botánica Experimental 78:105-110. Disponible en línea: http://www.scielo.org.ar/pdf/phyton/v78n2/v78n2a04.pdf
Naing KW, Anees M, Nguyen XH, Lee YS, Jeon SW, Kim SJ, Kim MH and Kim KY. 2014. Biocontrol of late blight disease (Phytophthora capsici) of pepper and the plant growth promotion by Paenibacillus ehimensis KWN38. Journal of Phytopathology 162:367-376. DOI: 10.1111/jph.12198
Nguyen XH, Naing KW, Lee YS, Tindwa H, Lee GH, Jeong BK, Ro HM, Kim SJ, Jung WJ and Kim KY. 2012. Biocontrol potential of Streptomyces griseus H7602 against root rot disease (Phytophthora capsici) in pepper. The Plant Pathology Journal 28(3):282-289. DOI: 10.5423/PPJ.OA.03.2012.0040
Pal KK and Gardener BM. 2006. Biological control of plant pathogens. The Plant Health Instructor. http://dx.doi.org/10.1094/PHI-A-2006-1117-02
Qi R, Wang T, Zhao W, Li P, Ding J and Gao Z. 2012. Activity of ten fungicides against Phytophthora capsici isolates resistant to Metalaxyl. Journal Phytopathology 160:717-722. DOI:10.1111/jph.12009
Rios-Velasco C, Caro-Cisneros JN, Berlanga-Reyes DI, Ruíz-Cisneros MF, Ornelas-Paz JJ, Salas-Marina MA, Villalobos-Pérez E and Guerrero-Prieto VM. 2016. Identification and antagonistic activity in vitro of Bacillus spp. and Trichoderma spp. isolates againts common phytopathogenic fungi. Revista Mexicana de Fitopatología 34:84-99. http://dx.doi: 10.18781/R.MEX.FIT.1507-1
Sánchez J, Correa M y Castañeda-Sandoval LM. 2016. Bacillus cereus un patógeno importante en el control microbiológico de los alimentos. Revista Facultad Nacional de Salud Pública 34(2):230-242. DOI: 10.17533/udea.rfnsp.v34n2a12
Sanogo S and Ji P. 2013. Water management in relation to control of Phytophthora capsici in vegetable crops. Agricultural Water Management 129:113-119. https://doi.org/10.1016/j.agwat.2013.07.018
Segarra G, Aviles M, Casanova E, Borrero A and Trillas I. 2013. Effectiveness of biological control of Phytophthora capsici in pepper by Trichoderma asperellum strain T34. Phytopathology Mediterranea 52(1):77-83. http://hdl.handle.net/11441/30458
Shanmugam V and Kanoujia N. 2011. Biological management of vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycospersici by plant growth-promoting rhizobacterial mixture. Biological Control 57:85-93. https://doi.org/10.1016/j.biocontrol.2011.02.001
SIAP (Servicio de Información Agroalimentaria y Pesquera). 2016. Cierre de la producción agrícola por estado. www.siap. gob.mx.
Thampi A and Bhai RS. 2017. Rhizosphere actinobacteria for combating Phytophthora capsici and Sclerotium rolfsii, the major soil borne pathogens of black pepper (Piper nigrum L.). Biological Control 109:1-13. http://dx.doi.org/10.1016/j.biocontrol.2017.03.006
Torres MJ, Brandan CP, Sabaté DC, Petroselli G, Erra-Balsells R and Audisio MC. 2017. Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens. Biological Control. 105:93-99. http://dx.doi.org/10.1016/j.biocontrol.2016.12.001
Torres MJ, Perez Brandan CP, Petroselli G, Erra-Balsells R and Audisio MC. 2016. Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiological Research 182:31-39. https://doi.org/10.1016/j.micres.2015.09.005
Wang CK, Liang CY, Chu CH and Lin MJ. 2011. Genetic comparison of sexual and asexual reproduction of Phytophthora capsici. Plant Pathology Bulleting 20:98-107. Disponible en línea: https://www.cabdirect.org/cabdirect/abstract/20123409244
Wei Z, Huang J, Yang Ch, Xu Y, Shen Q and Chen W. 2015. Screening of suitable carriers for Bacillus amyloliquefaciens strain QL-18 to enhance the biocontrol of tomato bacterial wilt. Crop Protection 75:96-103. https://doi.org/10.1016/j.cropro.2015.05.010
Yang R, Fan X, Cai X and Hu F. 2015. The inhibitory mechanisms by mixtures of two endophytic bacteria strains isolated from Ginkgo biloba against pepper phytophthora blight. Biological Control 85:59-67. http://dx.doi.org/10.1016/j.biocontrol.2014.09.013
Yu SM and Lee YH. 2013. Effect of light quality on Bacillus amyloliquefaciens JBC36 and its biocontrol efficacy. Biological Control 64:203-210. https://doi.org/10.1016/j.biocontrol.2012.11.004
Zhang JX, Gu YB, Chi FM, Ji ZR, Wu JY, Dong QL and Zhou ZS. 2015. Bacillus amyloliquefaciens GB1 can effectively control apple valsa canker. Biological Control 88:1-7. https://doi.org/10.1016/j.biocontrol.2015.04.022
Zhang S, White TL, Martinez MC, Mclnroy JA, Kloepper JW and Klassen W. 2010. Evaluation of plant growth-promoting rhizobacteria for control of Phytophthora blight on squash under greenhouse conditions. Biological Control 53:129-135. https://doi.org/10.1016/j.biocontrol.2009.10.015
Zhao P, Quan C, Wang Y, Wang J and Fan S. 2013. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. Journal of Basic Microbiology 54:448-456. DOI: 10.1002/jobm.201200414
Zheng M, Shi J, Shi J, Wanga Q and Li Y. 2013. Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos. Biological Control 65:200-206. https://doi.org/10.1016/j.biocontrol.2013.02.004
Zhi Y, Wu Q and Xu Y. 2017. Production of surfactin from waste distillers’ grains by co- culture fermentation of two Bacillus amyloliquefaciens strains. Bioresource Technology 235:96-103. http://dx.doi.org/10.1016/j.biortech.2017.03.090
DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1711-2
Refbacks
- There are currently no refbacks.