Evaluation of synthetic hexaploid wheats for resistance to Wheat Blast disease

Cinthia Carolina Cazal-Martínez, Alice Rocio Chávez, Yessica Magaliz Reyes-Caballero, Man Mohan Kohli, Pastor Enmanuel Pérez-Estigarribia

Abstract


Wheat Blast disease is caused by the fungus Pyricularia oryzae pathotype Triticum. The disease has been endemic to tropical South American region for over 30 years until 2016, when it occurred in Bangladesh, opening the possibility of its expansion to other regions. Considering the limited availability of known sources of resistance in wheat and the synthetic hexaploid wheats are known to be a source of resistance to multiple type of stresses, the objective of this research was to evaluate a collection of synthetic hexaploid wheats for their resistance to Wheat Blast. The experiments were carried out in the Hernando Bertoni Research Center, Paraguayan Institute of Agricultural Technology, Paraguay. Test spikes were inoculated, concentration of 5.104 conidios.mL-1. The reaction was evaluated 15 days after inoculation and observed for next 15 days to calculate the diseaseprogress. Sixty-four synthetic hexaploid wheats, provided by the International Maize and Wheat Improvement Center, Mexico, were subjected to infections by isolate (P14ATae039) of P. oryzae, 18 materials were selected based on their maximum values of reaction, to be reevaluated with two different isolates P14ATae039 and P14YTae031. TS29, TS49 synthetic wheat were identified as new sources of resistance to wheat blast and TS73 wheat that is moderately susceptible, but of different genetic origin. To our best knowledge, this is the first report of synthetic hexaploid wheats selected as new sources of genetic resistance to wheat blast disease.

Keywords


Fungal disease; resistance to pathogen; Aegilops tauschii; Triticum durum

Full Text:

PDF (Español)

References


Chávez, A., Cazal, C. and Kohli, M. M. 2017. Difference in the reaction to Pyricularia oryzae of wheat materials in the vegetative and reproductive stages. Investigación Agraria, 19(1), 56–63. https://doi.org/10.18004/investig.agrar.2017.junio.56-63

Chávez, A. R. and Kohli, M. M. 2018. Patogenicidad de Magnaporthe oryzae en variedades y líneas de trigo cultivadas en Paraguay. Revista Mexicana de Fitopatología, 36(2), 1–11. https://doi.org/10.18781/R.MEX.FIT.1712-3

Couch, B. C. and Kohn, L. M. 2002. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia, 94(4), 683–693. https://doi.org/10.2307/3761719

Cruz, C. D., Peterson, W., Bockus, W. W., Kankanala, P., Dubcovsky, J., Jordan, K. W., Akhunov, E., Chumley, F., Baldelomar, F., Valent, B. (2016). The 2NS Translocation from Aegilops ventricosa Confers Resistance to the Triticum Pathotype of Magnaporthe oryzae. Crop Science, 56(3), 990–1000. https://doi.org/10.2135/cropsci2015.07.0410

Cruz, C. D., and Valent, B. (2017). Wheat blast disease: danger on the move. Tropical Plant Pathology, 42(3), 210–222. https://doi.org/10.1007/s40858-017-0159-z

Das, M. K., Bai, G., Mujeeb-Kazi, A. and Rajaram, S. 2015. Genetic diversity among synthetic hexaploid wheat accessions (Triticum aestivum) with resistance to several fungal diseases. Genetic Resources and Crop Evolution, 63(8), 1285–1296. https://doi.org/10.1007/s10722-015-0312 9

Gladieux, P., Condon, B., Ravel, S., Soanes, D., Maciel, J. L. N., Nhani, A., Chen, Li., Terauchi, R., Lebrun, M., Tharreau, D., Mitchell, T., Pedley, K., Valent, B., Talbot, N., Farman, M.,Fournier, E. 2018. Gene Flow between Divergent Cereal- and Grass-Specific Lineages of the Rice Blast Fungus Magnaporthe oryzae. American Society for microbiology, 9(1), e01219-17. https://doi.org/10.1128/mBio.01219-17

Gul Kazi, A., Awais, R., Tariq, M. and Mujeeb-Kazi, A. 2012. Molecular and morphological diversity with biotic stress resistances of high 1000-grain weight synthetic hexaploid wheats. Pakistan Journal of Botany, 44(3), 1021–1028. Retrieved from file:///C:/Users/user/Downloads/Gul Kazietal2012PJB.pdf

Jeger, M. J. and Viljanen-Rollinson, S. L. H. 2001. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics, 102(1), 32–40. https://doi.org/10.1007/s001220051615

Jighly, A., Alagu, M., Makdis, F., Singh, M., Singh, S., Emebiri, L. C., & Ogbonnaya, F. C. 2016. Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat. Molecular Breeding, 36(9). https://doi.org/10.1007/s11032-016-0541-4

Klaubauf, S., Tharreau, D., Fournier, E., Groenewald, J. Z., Crous, P. W., de Vries, R. P., Lebrun, M.-H. (2014). Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Studies in Mycology, 79, 85–120.

https://doi.org/10.1016/j.simyco.2014.09.004

Kohli, M., Mehta, Y. R., Guzman, E., de Viedma, L. and Cubilla, L. E. 2011. Pyricularia blast-a threat to wheat cultivation. Czech Journal of Genetics and Plant Breeding, 47(SPEC. ISSUE 1), 130–134. https://doi.org/DOI:10.17221/3267-CJGPB

Lu, C. M., Yang, W. Y., Zhang, W. J. and Lu, B. R. 2005. Identification of SNPs and development of allelic specific PCR markers for high molecular weight glutenin subunit D tx1.5 from Aegilops tauschii through sequence characterization. Journal of Cereal Science, 41(1), 13–18. https:// doi.org/10.1016/j.jcs.2004.05.006

Lule, D., de Villiers, S., Fetene, M., Bogale, T., Alemu, T., Geremew, G., Gashaw, G., Tesfaye, K. 2014. Pathogenicity and yield loss assessment caused by Magnaporthe oryzae isolates in cultivated and wild relatives of finger millet (Eleusine coracana). Indian Journal of Agricultural Research, 48(4), 258–268. https://doi.org/10.5958/0976-058X.2014.00659.3

Malaker, P. K., Barma, N. C. D., Tiwari, T. P., Collis, W. J., Duveiller, E., Singh, P. K., Joshi, A., Singh, R., Braun, H., Peterson, G., Pedley, K., Farman, M., Valent, B. 2016. First Report of Wheat Blast Caused by Magnaporthe oryzae Pathotype triticum in Bangladesh. Plant Disease, PDIS-05-16-0666-PDN. https://doi.org/10.1094/PDIS-05-16-0666-PDN

Marangoni, M. S., Nunes, M. P., Fonseca, J. N., & Mehta, Y. R. 2013. Pyricularia blast on white oats - a new threat to wheat cultivation. Tropical Plant Pathology, 38(3), 198– 202. https://doi.org/10.1590/S1982-56762013005000004

Masood, R., Ali, N., Jamil, M., Bibi, K., Rudd, J. C. and Mujeeb-Kazi, A. 2016. Novel genetic diversity of the alien Dgenome synthetic hexaploid wheat (2n=6x=42, Aabbdd) germplasm for various phenology traits. Pakistan Journal of Botany, 48(5), 2017–2024. https://doi.org/10/2016;48(5):2017-2024

Ogbonnaya, F. C., Abdalla, O., Mujeeb-Kazi, A., Kazi, A. G., Xu, S. S., Gosman, N., Lagudah, Evans S., Bonnett, D., Sorrells, M., Tsujimoto, H. 2013. Synthetic hexaploids: Harnessing species of the primary gene pool for wheat improvement. Plant Breeding. Reviews 37 (First Edition).

https://doi.org/10.1002/9781118497869.ch2

Okamoto, Y., Nguyen, A. T., Yoshioka, M., Iehisa, J. C. M. and Takumi, S. 2013. Identification of quantitative trait loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines. Breeding Science, 63(4), 423–429. https://doi.org/10.1270/jsbbs.63.423

Pieck, M. L., Ruck, A., Farman, M., Peterson, G. L., Stack, J. P., Valent, B., & Pedley, K. F. 2016. Genomics-Based Marker Discovery and Diagnostic Assay Development for Wheat Blast. Plant Disease, PDIS-04-16-0500-RE. https://doi.org/10.1094/PDIS-04-16-0500-RE

Prabhu, A. S., De Castro, E. D. M., De Araújo, L. G. and Berni, R. F. 2003. Resistance spectra of six elite breeding lines of upland rice to Pyricularia grisea. Pesquisa Agropecuaria Brasileira, 38(2), 203–210. https://doi.org/10.1590/S0100-204X2003000200006

Rasheed, A., Xia, X., Ogbonnaya, F., Mahmood, T., Zhang, Z., Mujeeb-Kazi, A. and He, Z. 2014. Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biology, 14(1), 128. https://doi.org/10.1186/1471-2229-14-128

Sohail, Q., Inoue, T., Tanaka, H., Eltayeb, A. E., Matsuoka, Y. and Tsujimoto, H. 2011. Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. Breeding Science, 61(4), 347–357. https://doi.org/10.1270/jsbbs.61.347




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1807-5

Refbacks

  • There are currently no refbacks.