A novel molecular approach in the study of parasite-host interaction
Abstract
Effectors have become the cornerstone of all investigations related to the interaction of parasites and their hosts, how they regulate the processes of infection at a molecular level, and how these molecules have evolved seem to be the most important issues that will have to be addressed in the following years. These new lines of research will be subject to the enormous progress that the next generation of sequencing technologies will have, and with them a paradigm shift in our vision of complex systems. However, there remain many questions to be elucidated about effectors, for example, how these proteins interact spatially and temporally in their hosts, possible co-operation between effectors, and the existence of protein complexes within host cells. This leads to the following questions: Do the effectors have the capacity for phenotypic expression beyond the genes that encode them? And above all, why are these proteins so widespread on a huge range of evolutionarily distant pathogens?
Keywords
Full Text:
PDF (Español)References
Abramovitch RB, Anderson JC, and Martin GB. 2006. Bacterial elicitation and evasion of plant innate immunity. Nature Reviews Molecular Cell Biology 7: 601-611. http:// dx.doi.org/10.1038/nrm1984.
Amselem J, Vigouroux M, Oberhaensli S, Brown JK, Bindschedler LV, Skamnioti P, Wicker T, Spanu PD, Quesneville H, and Sacristán S. 2015. Evolution of the EKA family of powdery mildew avirulence-effector genes from the ORF 1 of a LINE retrotransposon. BMC Genomics 16: 917. https://doi.org/10.1186/s12864-015-2185-x.
Banfield MJ. 2015. Perturbation of host ubiquitin systems by plant pathogen/pest effector proteins. Cellular microbiology 17: 18-25. https://doi.org/10.1111/cmi.12385
Bender CL, Alarcón-Chaidez F, and Gross DC. 1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiology and molecular biology reviews 63: 266-292. Disponible en línea: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC98966/pdf/mr000266.pdf
Bia?as A, Zess EK, De la Concepcion JC, Franceschetti M, Pennington HG, Yoshida K, Upson JL, Chanclud E, Wu C-H, and Langner T. 2017. Lessons in effector and NLR biology of plant-microbe systems. Molecular Plant
Microbe Interactions 31: 34-45. https://doi.org/10.1094/ MPMI-08-17-0196-FI.
Block A, Li G, Fu ZQ, and Alfano JR. 2008. Phytopathogen type III effector weaponry and their plant targets. Current opinion in plant biology 11: 396-403. http://dx.doi. org/10.1016/j.pbi.2008.06.007.
Bos JI, Kanneganti TD, Young C, Cakir C, Huitema E, Win J, Armstrong MR, Birch PR, and Kamoun S. 2006. The C?terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a?mediated hypersensitivity and suppress INF1?induced cell death in Nicotiana benthamiana. The Plant Journal 48: 165-176. http://dx.doi.org/10.1111/j.1365-313X.2006.02866.x.
Cai H, Wei W, Davis RE, Chen H, and Zhao Y. 2008. Genetic diversity among phytoplasmas infecting Opuntia species: virtual RFLP analysis identifies new subgroups in the peanut witches’-broom phytoplasma group. Int J Syst Evol Microbiol 58: 1448-1457.
http://doi.org/10.1099/ijs.0.65615-0.
Chalupowicz L, Barash I, Schwartz M, Aloni R, and Manulis S. 2006. Comparative anatomy of gall development on Gypsophila paniculata induced by bacteria with different mechanisms of pathogenicity. Planta 224: 429-437. https://doi.org/10.1007/s00425-006-0229-9.
Charron C, Nicolaï M, Gallois JL, Robaglia C, Moury B, Palloix A, and Caranta C. 2008. Natural variation and functional analyses provide evidence for co?evolution between plant eIF4E and potyviral VPg. The Plant Journal 54: 5668. http://dx.doi.org/10.1111/j.1365313X.2008.03407.x.
Chisholm ST, Coaker G, Day B, and Staskawicz BJ. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124: 803-814. http://dx.doi. org/10.1016/j.cell.2006.02.008.
Costacurta A, and Vanderleyden J. 1995. Synthesis of phytohormones by plant-associated bacteria. Critical reviews in microbiology 21: 1-18. http://dx.doi. org/10.3109/10408419509113531.
Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, Tabassum N, Cruz-Mireles N, Hughes RK, and Sklenar J. 2016. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. Elife 5: e10856. http://dx.doi.org/10.7554/eLife.10856.001.
Damasceno CM, Bishop JG, Ripoll DR, Win J, Kamoun S, and Rose JK. 2008. Structure of the glucanase inhibitor protein (GIP) family from Phytophthora species suggests coevolution with plant endo-?-1, 3-glucanases. Molecular Plant-Microbe Interactions 21: 820-830. http://dx.doi. org/10.1094/MPMI-21-6-0820.
Davis EL, Hussey RS, Mitchum MG, and Baum TJ. 2008. Parasitism proteins in nematode–plant interactions. Current opinion in plant biology 11: 360-366. https://doi. org/10.1016/j.pbi.2008.04.003.
De la Concepcion JC, Franceschetti M, Maqbool A, Saitoh H, Terauchi R, Kamoun S, and Banfield MJ. 2018. Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen. Nature plants 4: 576.
Di X, Cao L, Hughes RK, Tintor N, Banfield MJ, and Takken FL. 2017. Structure–function analysis of the Fusarium oxysporum Avr2 effector allows uncoupling of its immune?suppressing activity from recognition. New Phytologist 216: 897-914. https://doi.org/10.1111/nph.14733
Dong S, Stam R, Cano LM, Song J, Sklenar J, Yoshida K, Bozkurt TO, Oliva R, Liu Z, and Tian M. 2014. Effector specialization in a lineage of the Irish potato famine pathogen. Science 343: 552-555. http://doi.org/10.1126/science.1246300.
Dou D, Kale SD, Wang X, Chen Y, Wang Q, Wang X, Jiang RH, Arredondo FD, Anderson RG, and Thakur PB. 2008. Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b. The Plant Cell 20: 1118-1133. https://doi.org/10.1105/tpc.107.057067.
Duan Y, Castaneda A, Zhao G, Erdos G, and Gabriel D. 1999. Expression of a single, host-specific, bacterial pathogenicity gene in plant cells elicits division, enlargement, and cell death. Molecular Plant-Microbe Interactions 12: 556560. https://doi.org/10.1094/MPMI.1999.12.6.556.
Futuyma D. 2013. Evolution. 3rd edn. Sunderland, MA. Sinauer Associates, Inc. Gout L, Fudal I, Kuhn ML, Blaise F, Eckert M, Cattolico L, Balesdent MH, and Rouxel T. 2006. Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Mol Microbiol 60: 67-80. http://dx.doi.org/10.1111/j.13652958.2006.05076.x.
Hogenhout SA, and Loria R. 2008. Virulence mechanisms of Gram-positive plant pathogenic bacteria. Current opinion in plant biology 11: 449-456. http://dx.doi.org/10.1016/j. pbi.2008.05.007.
Hogenhout SA, Van der Hoorn RA, Terauchi R, and Kamoun S. 2009. Emerging concepts in effector biology of plant-associated organisms. Molecular Plant-Microbe Interactions 22: 115-122. http://dx.doi.org/10.1094/MPMI-22-2-0115.
Hughes DP, Brodeur J, and Thomas F. 2012. Host manipulation by parasites. Oxford University Press.
Hughes R, and Banfield M. 2014. Production of RXLR effector proteins for structural analysis by X-ray crystallography. Methods in molecular biology (Clifton, NJ) 1127: 231-253.
Iyer-Pascuzzi AS, and McCouch SR. 2007. Recessive resistance genes and the Oryza sativa-Xanthomonas oryzae pv. oryzae pathosystem. Molecular Plant-Microbe Interactions 20: 731-739. http://dx.doi.org/10.1094/MPMI20-70731.
Janjusevic R, Abramovitch RB, Martin GB, and Stebbins CE. 2006. A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311: 222-226. http://dx.doi.org/10.1126/science.1120131.
Jiang RH, Weide R, van de Vondervoort PJ, and Govers F. 2006. Amplification generates modular diversity at an avirulence locus in the pathogen Phytophthora. Genome research 16: 827-840. https://doi.org/10.1101/gr.5193806.
Kamoun S. 2007. Groovy times: filamentous pathogen effectors revealed. Current opinion in plant biology 10: 358365. https://doi.org/10.1016/j.pbi.2007.04.017.
Kawaide H. 2006. Biochemical and molecular analyses of gibberellin biosynthesis in fungi. Bioscience, biotechnology, and and biochemistry 70: 583-590. https://doi.org/10.1271/ bbb.70.583.
Kay S, Hahn S, Marois E, Hause G, and Bonas U. 2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318: 648-651. http:// dx.doi.org/10.1126/science.1144956.
Kim MG, Da Cunha L, McFall AJ, Belkhadir Y, DebRoy S, Dangl JL, and Mackey D. 2005. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121: 749-759. http://dx.doi. org/10.1016/j.cell.2005.03.025.
Le Fevre R, Evangelisti E, Rey T, and Schornack S. 2015. Modulation of host cell biology by plant pathogenic microbes. Annual review of cell and developmental biology 31: 201-229.
http://dx.doi.org/10.1146/annurev-cellbio-102314-112502.
Lilley CJ, Maqbool A, Wu D, Yusup HB, Jones LM, Birch PR, Banfield MJ, Urwin PE, and Eves-van den Akker S. 2018. Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene. PLoS genetics 14: e1007310. https://doi.org/10.1371/journal.pgen.1007310.
Ma W, and Guttman DS. 2008. Evolution of prokaryotic and eukaryotic virulence effectors. Current opinion in plant biology 11: 412-419. https://doi.org/10.1016/j. pbi.2008.05.001.
MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RG, and Hogenhout SA. 2014. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS biology 12: e1001835. http://dx.doi.org/10.1371/journal. pbio.1001835.
McCann HC, and Guttman DS. 2008. Evolution of the type III secretion system and its effectors in plant–microbe interactions. New Phytologist 177: 33-47. http://dx.doi. org/10.1111/j.1469-8137.2007.02293.x.
Mccann L. 2016. Characterisation of the Cf-Ecp2 gene encoding for recognition of the conserved fungal effector Ecp2 in Solanum pimpinellifolium and Nicotiana paniculata. University of East Anglia.
Misas-Villamil JC, and Van der Hoorn RA. 2008. Enzyme– inhibitor interactions at the plant–pathogen interface. Current opinion in plant biology 11: 380-388. https://doi. org/10.1016/j.pbi.2008.04.007.
Nemri A, Saunders DG, Anderson C, Upadhyaya NM, Win J, Lawrence G, Jones D, Kamoun S, Ellis J, and Dodds P. 2014. The genome sequence and effector complement of the flax rust pathogen Melampsora lini. Frontiers in plant science 5: 98. https://doi.org/10.3389/fpls.2014.00098.
Oldroyd GE, and Downie JA. 2008. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59: 519-546. http://dx.doi.org/10.1146/annurev. arplant.59.032607.092839.
Panstruga R. 2003. Establishing compatibility between plants and obligate biotrophic pathogens. Current opinion in plant biology 6: 320-326. https://doi.org/10.1016/S13695266(03)00043-8.
Römer P, Hahn S, Jordan T, Strauß T, Bonas U, and Lahaye T. 2007. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318: 645-648. http://dx.doi.org/10.1126/science.1144958.
Rosebrock TR, Zeng L, Brady JJ, Abramovitch RB, Xiao F, and Martin GB. 2007. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448: 370-374. http://doi.org/10.1038/nature05966.
Sarma GN, Manning VA, Ciuffetti LM, and Karplus PA. 2005. Structure of Ptr ToxA: An RGD-containing host-selective toxin from Pyrenophora tritici-repentis. The Plant Cell 17: 3190-3202. https://doi.org/10.1105/tpc.105.034918.
Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T, Chintha R, Harzen A, Colby T, Kamoun S, and van der Hoorn RA. 2008. Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato. The Plant Cell 20: 1169-1183. https://doi.org/10.1105/tpc.107.056325.
Sohn KH, Lei R, Nemri A, and Jones JD. 2007. The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. The Plant Cell 19: 4077-4090. https://doi.org/10.1105/tpc.107.054262.
Sugio A, Yang B, Zhu T, and White FF. 2007. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIA?1 and OsTFX1 during bacterial blight of rice. Proceedings of the National Academy of Sciences 104: 10720-10725. http://dx.doi.org/10.1073/pnas.0701742104
Sugio A, MacLean AM, Grieve VM, and Hogenhout SA. 2011. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences 108: E1254-E1263.
Thomma BP, van Esse HP, Crous PW, and de Wit PJ. 2005. Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Molecular plant pathology 6: 379-393. http://dx.doi.org/10.1111/j.13643703.2005.00292.x.
Tian M, Benedetti B, and Kamoun S. 2005. A second Kazallike protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiol 138: 1785-1793. https://doi.org/10.1104/pp.105.061226.
Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, and Kamoun S. 2007. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol 143: 364-377. https://doi.org/10.1104/ pp.106.090050.
Tomkins M, Kliot A, Marée AF, and Hogenhout SA. 2018. A multi-layered mechanistic modelling approach to understand how effector genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment. Current opinion in plant biology 44: 39-48. https://doi. org/10.1016/j.pbi.2018.02.002.
Tudzynski B. 1999. Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects. Applied microbiology and biotechnology 52: 298-310. https://doi.org/10.1007/ s002530051.
van der Hoorn RA, and Kamoun S. 2008. From guard to decoy: a new model for perception of plant pathogen effectors. The Plant Cell 20: 2009-2017. https://doi.org/10.1105/ tpc.108.060194.
van Esse HP, van’t Klooster JW, Bolton MD, Yadeta KA, Van Baarlen P, Boeren S, Vervoort J, de Wit PJ, and Thomma BP. 2008. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. The Plant Cell 20: 1948-1963. https://doi.org/10.1105/ tpc.108.059394.
Washington E, Mukhtar M, Finkel O, Wan L, Banfield M, Kieber J, and Dangl J. 2016. Pseudomonas syringae type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction. Proc Natl Acad Sci U S A 113: E3577-3586.
Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, Van West P, and Chapman S. 2007. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450: 115-118. http://dx.doi.org/10.1038/nature06203.
Win J, Morgan W, Bos J, Krasileva KV, Cano LM, ChaparroGarcia A, Ammar R, Staskawicz BJ, and Kamoun S. 2007. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. The Plant Cell 19: 2349-2369. https://doi.org/10.1105/ tpc.107.051037.
Wirthmueller L, Asai S, Rallapalli G, Sklenar J, Fabro G, Kim DS, Lintermann R, Jaspers P, Wrzaczek M, and Kangasjärvi J. 2018. Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL?INDUCED CELL DEATH1. New Phytologist 220: 232-248.
Xing W, Zou Y, Liu Q, Liu J, Luo X, Huang Q, Chen S, Zhu L, Bi R, and Hao Q. 2007. The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 449: 243-247. http://dx.doi.org/10.1038/nature06109.
Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J et al. 2009. Association Genetics Reveals Three Novel Avirulence Genes from the Rice Blast Fungal Pathogen Magnaporthe oryzae. The Plant Cell 21: 1573-1591. https://doi. org/10.1105/tpc.109.066324.
Zhou J-M, and Chai J. 2008. Plant pathogenic bacterial type III effectors subdue host responses. Curr Opin Microbiol 11: 179-185. https://doi.org/10.1016/j.mib.2008.02.004.
DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1808-6
Refbacks
- There are currently no refbacks.