Performance of native accessions of Carica papaya inoculated with PRSV-p using Aphis nerii

Rodrigo Flores-Bautista, Catarino Ávila-Reséndiz, Juan Antonio Villanueva-Jiménez, Cristian Nava-Díaz, Enrique Noé Becerra-Leor

Abstract


Tolerance to the papaya ring spot virus (PRSV-p) may exist in native Carica papaya plants. The response of 13 native papaya accessions (Acc) and the commercial variety Red Maradol to the incidence and severity of the PRSV-p, inoculated with the vector insect Aphis nerii, and their relation with the observed plant management during their collection were evaluated. Acc were collected in the wild, in backyards or in production fields. Three months old-plants were infected with the virus. Disease incidence and severity were measured nine times weekly. Acc 203 and 205 showed the lowest disease severity index (1.0), followed by 147a and 60 (both with 1.7), 94a (2.0) and 197a (2.2); Acc 64a (2.5) and 150 (2.8) reached intermediate severity, followed by 65 and 210b (with 3.3), and by 80, 169 and 188a (with 4.3). Red Maradol variety showed the highest severity index (4.8). In relation to the management in which plants were collected, mean severity in Acc coming from the wild was significantly lower (P=0.032) than in Red Maradol, although they were not different from Acc coming from cultivated orchards or from backyards. It is possible that PRSV-p tolerance genes might be found in wild Acc.

Keywords


incidence; severity; tolerance; aphids

Full Text:

PDF (Español)

References


Alviar NA, Sta Cruz FC and Hautea DM. 2012. Assessing the responses of tolerant papaya (Carica papaya L.) varieties to papaya ringspot virus (PRSV) infection and establishment of symptom severity rating scale for resistance screening. Philippine Journal of Crop Science 37:20-28. http:// www.cssp.org.ph/pjcs/abstracts/volume-37-issue-no-2august-2012/

Bau HJ, Ying-Huey C, Tesong-Ann Y, Jiu-Sherng Y and ShyiDong Y. 2003. Broad-spectrum resistance to different geographic strains of papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93:112-120. https://apsjournals.apsnet.org/doi/10.1094/PHYTO.2003.93.1.112

Bau HJ, Ying-Huey C, Tesong-Ann Y, Jiu-Sherng Y, ChiHsiung H, Chien-Yih L and Shyi-Dong Y. 2004. Field evaluation of transgenic papaya lines carrying the coat protein gene of papaya ringspot virus in Taiwan. Plant Disease 88:594-599. https://doi.org/10.1094/PDIS.2004.88.6.594

d’Eeckenbrugge G, Drew R, Kyndt T and Scheldeman X. 2014. Vasconcellea for papaya improvement. In: Ming R and Moore PH. (eds.) Genetics and Genomics of Papaya. Springer, New York. pp. 47-79. https://link.springer.com/ chapter/10.1007/978-1-4614-8087-7_4

Fuentes G and Santamaría JM. 2014. Papaya (Carica papaya L.): Origin, domestication, and production. In: R Ming and Moore PH (eds.). Genetics and Genomics of Papaya. Springer, New York. pp. 3-15. https://doi.org/10.1007/9781-4614-8087-7_1

Gonsalves D, Tripathi S, Carr JB and Suzuki JY. 2010. Papaya ringspot virus. The Plant Health Instructor. https://doi. org/10.1094/PHI-I-2010-1004-01

Hernández-Castro E, Villanueva-Jiménez JA, Mora-Aguilera JA y Nava-Díaz C. 2010. Barreras de maíz en una estrategia de manejo integral para controlar epidemias del virus mancha anular del papayo (PRSV-P). Agrociencia 44:339349. http://www.redalyc.org/pdf/302/30215552008.pdf

Hernández-Castro E, Nava DA, Mora AJA, Villanueva-Jiménez JA, Vargas AD and Palemón FA. 2015. Incidence of the papaya ringspot virus (PRSV-p) and management in the state of Guerrero, Mexico. In: Dimitrov TS and Vitanova II. Tropical Fruits. Nova Science Publishers Inc. pp. 119-127. https://www.novapublishers.com/catalog/product_info.php?products_id=54114

Noa-Carrazana J, González LD, Ruiz-Castro B, Piñero D and Silva-Rosales L. 2006. Distribution of papaya ringspot virus and papaya mosaic virus in papaya plants (Carica papaya L.) in Mexico. Plant Disease 90:1004-1011. https:// doi.org/10.1094/PD-90-1004

Osorio-Acosta F, Villanueva-Jiménez JA, Celis-León B, Morales-Rodríguez A y José-Pablo R. 2016. Insecticidas en la transmisión del virus de la mancha anular de Carica papaya L., mediante Aphis nerii (Boyer de Fonscolombe). Agroproductividad 9(10):68-74 http://www.revista-agroproductividad.org/index.php/agroproductividad/article/ view/834

Porter BW, Christopher DA and Zhu YJ. 2013. The phylogeny of Caricaceae. In: Ming R and Moore PH (eds.). Genetics and Genomics of Papaya. Springer, New York. pp. 277307. https://doi.org/10.1007/978-1-4614-8087-7_15

Rodríguez D, Alonso M, Tornet Y, Valero L, Lorenzetti, ER and Pérez R. 2013. Assessment of Cuban papaya (Carica papaya L.) accessions against ringspot. Summa Phytopathologica 39:24-27. https://doi.org/10.1590/S010054052013000100004

Romero RJA. 2013. Manejo y conservación de germoplasma de la familia Caricaceae. Tesis de Doctorado. Montecillo, Texcoco, Edo. de México. 145 p. http://www.secheresse. info/spip.php?article35498

SINAREFI, Sistema Nacional de Recursos Fitogenéticos para la Alimentación y la Agricultura. 2017. MacroRed Frutales. SNICS, SAGARPA, México. 62 p. https://www.gob. mx/snics/acciones-y-programas/macro-red-frutales (consulta: mayo 2018).

Villanueva-Jiménez JA, Abato-Zárate M y Reyes-Pérez N. 2015. Plagas del papayo en México. In: Otero-Colina G, Abato-Zárate M y Villanueva-Jiménez JA. (eds.). Ácaros Asociados al Cultivo de Papayo en México. Editorial Colegio de Postgraduados. México. pp. 29-40. https://www. researchgate.net/publication/294893439

Yanthan LJ, Vasugi C, Dinesh MR, Reddy K and Das R. 2017. Evaluation of F6 intergeneric population of papaya (Carica papaya L.) for resistance to papaya ring spot virus (PRSV). International Journal of Current Microbiology and Applied Sciences 6:289-298. https://doi.org/10.20546/ ijcmas.2017.605.033




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1808-5

Refbacks

  • There are currently no refbacks.