Effect of ethanol extract of fig residue (Ficus carica) on growth of postharvest fungi

María Alejandra Istúriz-Zapata, Mariana Pérez-García, Sergio Contreras-Saavedra, Laura Leticia Barrera-Necha

Abstract


The residue generated during fig production is a novel alternative to elaborate biofungicides. Polyphenols are compounds that are present mainly in the skin of fig fruit and have antioxidant and antimicrobial activity and this waste was used to quantify phenols, anthocyanins and  antioxidant activity. They were used to determine its effect on  Mycelial Growth rate (TG), Mycelial Growth Inhibition (MGI), sporulation and germination of the spores of phytopathogenic fungi Colletotrichum acutatum, Fusarium solani, Penicillium oxallicum and Rhizopus stolonifer, at concentrations of 2.5 to 50 mg mL-1. An ANOVA and test of Tukey were applied. The concentration of total polyphenols and anthocyanins were higher in the skin of the fig, compared with those of the ethanolic extract. In contrast, the antioxidant capacity of the extract was higher at 32.9 ?mol g-1 compared with fig skin 21.7 ?mol g-1. In general, the fungi presented TC similary to the control and low MGI of 23 to 30%. The sporulation was not observed in F. solani at concentrations of 7.5 to 25 mg mL-1. The percentage of germination of spores in R. stolonifer was from 0% at 50 mg mL-1.

Keywords


Fig; residue; fungi; extracts; postharvest

Full Text:

PDF (Español)

References


Abou-Jawdah Y, Sobh H and Salameh A. 2002. Antimycotic activities of selected plant flora, growing wild in Lebanon, against 398 phytopathogenic fungi. Journal of Agricultural and Food Chemistry. 50 (11): 3208-3213. https://doi. org/10.1021/jf0115490

Aguilera-Ortíz M, Alanis-Guzmán M, García-Díaz C y Hernández-Brenes C. 2009. Caracterización y estabilidad de antocianinas de higo, variedad Mission. Revista Universidad y Ciencia, Trópico Húmedo. 25 (2):151-158. www. ujat.mx/publicaciones/uciencia

Cury RK, Aguas MY, Martínez M, Olivero VR y Chams ChL. 2017. Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana Ciencia Animal. 9(Supl): 122-132. https://doi.org/10.24188/recia. v9.nS.2017.530

Darren J and Constabel P. 2002 Molecular Analysis of Herbivore-induced Condensed Tannin Synthesis: Cloning and Expression of Dihydroflavonol Reductase from Trembling Aspen (Populus tremuloides). The Plant Journal. 32: 70112. https://doi.org/10.1046/j.1365-313X.2002.01458.x

Ehala S, Vaher M and Kaljurand M. 2004. Separation of Polyphenols and L-ascorbic Acid and Investigation of their Antioxidant Activity by Capillary Electrophoresis. Proceedings of the Estonian Academy of Sciences. Chemistry 53: 21-35. https://books.google.com.mx/ books?id=tCYDq3WKbvkC

Isaac GS and Abu-Tahon MA. 2014. In vitro antifungal activity of medicinal plant extract against Fusarium oxysporum f. sp. 439 lycopersici race 3 the causal agent of tomato wilt. Acta Biologica Hungarica, 65(1): 107-18. https://doi. org/10.1556/ABiol.65.2014.1.10

Kader A. 1992. Postharvest Technology of horticultural crops. Second Edition. Oakland, California. United Stated. Division of Natural Resources. University of California. 535p.

Koruklu Oglu M, Sahan Y and Yigit A. 2008. Antifungal properties of olive leaf extracts and their phenolic compounds. Journal of Food Safety 28: 76-87. https://doi.org/10.1111/ j.1745-4565.2007.00096.x

Kubra IR, Murthy PS and Rao LJM. 2013. In vitro antifungal activity of Dehydrozingerone and its fungitoxic properties. Journal of Food Science, 78(1): M64-M69. https://doi. org/10.1111/j.1750-3841.2012.03009.x

Kuskoski EM, Asuero AG, Troncoso AM, Mancini-Filho J y Fett R. 2005. Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Science and Technology 25(4): 726-732. http://www. scielo.br/pdf/cta/v25n4/27642.pdf

Montes-Belmont R and Prados Ligero AM. 2006. Influence of plant extracts on Sclerotium cepivorum development. Plant Pathology Journal. 5:373-377. https://doi.org/10.3923/ ppj.2006.373.377

Morgado-González A, Becerril-Román AE, Calderón-Zavala G, García-Villanueva E, Velasco-Cruz C y Alberto-Villa J. 2018. Bioestimulantes y nutrimentos foliares en la producción de higo (Ficus carica L.) ‘café de Turquía’. Agroproductividad: Vol. 11 (9): 15-19. https://doi.org/10.32854/ agrop.v11i9.1209

Sanzani SM, De Girolamo A, Schena L, Solfrizzo M, Ippolito A and Visconti A. 2009. Control of Penicillium expansum and patulin accumulation on apples by quercetin and umbelliferone European Food Research and Technology 228: 381-389. https://doi.org/10.1007/s00217-008-0944-5

Schena L, Nigro F and Ippolito A. 2008. Natural antimicrobials to improve storage und shelf life of fresh fruits, vegetables and cut flowers. Microbial Biotechnology in Horticulture 2: 259-302. https://doi.org/10.1201/9780203508244.ch10

Singleton VL, Rossi JA, 1965. Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158.

Vargas-Corredor Y y Pérez-Pérez L. 2018. Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente. Revista Facultad de Ciencias Básicas. Vol. 14 (1): 1-14. http://dx.doi.org/10.18359/rfcb.3108

Veloz-García R, Marín-Martínez R, Veloz-Rodríguez R, Rodríguez-Guerra R, Torres-Pacheco I, González-Chavira MM, Anaya-López JL, Guevara-Olvera L, Feregrino-Pérez AA, Loarca-Piña G and Guevara-González RG. 2010. Antimicrobial activities of cascalote (Caesalpinia cacalaco) phenolics-containing extract against fungus Colletotrichum lindemuthianum. Industrial Crops and Products 31: 134-138. https://doi.org/10.1016/j.indcrop.2009.09.013

Veberic R, Colaric M and Stampar F. 2008. Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chemistry 106:153-157. https:// doi.org/0.1016/j.foodchem.2007.05.061

Villa-Martínez A, Pérez-Leal R, Morales-Morales H, BasurtoSotelo M, Soto-Parra J y Martínez-Escudero E. 2015. Situación actual en el control de Fusarium spp. y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronómica. Vol 64 (2) 2015, p 194-205. http://dx.doi. org/10.15446/acag.v64n2.43358

Wojciechowska E, Weinert C, Egert B, Trierweiler B, Schmidt-Heydt M, Horneburg B, Graeff-Hönninger S, Kulling S and Geisen R. 2014. Chlorogenic acid, a metabolite identified by untargeted metabolome analysis in resistant tomatoes, inhibits the colonization by Alternaria alternata by inhibiting alternariol biosynthesis. European Journal Plant Pathology. https://doi.org/10.1007/s10658-014-0428-3

Yepes M, Montoya L y Orozco F. 2008. Valorización de residuos agroindustriales – frutas – en Medellín y el sur del valle del Aburrá, Colombia. Revista Facultad Nacional Agrícola de Medellín 61(1): 4422-4431. http://www. scielo.org.co/pdf/rfnam/v61n1/a18v61n1.pdf

Yoshida T, Hatano T, Ito H and Okuda T. 2009. Chemistry and Biology of Ellagitannins: An Underestimated Class of Bioactive Plant Polyphenols: 55-93. https://doi. org/10.17306/J.AFS.2014.3.7




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1904-6

Refbacks

  • There are currently no refbacks.