Pathosystem Solanum lycopersicum-Phytophthora infestans in Chapingo, Mexico. Expected, observed and simulated

Lucio Delesma-Morales, Héctor Lozoya-Saldaña, J. Enrique Rodríguez-Pérez, Jaime B. Díaz-de la Cruz

Abstract


Phytophthora infestans is affected by biotic and abiotic factors that can vary its pathogenicity. In the highlands of Mexico, the genetic variability of P. infestans, low temperatures, high relative humidity and light favor its expression and influence the efficacy of the infection. This work analyzed the progress of infection of P. infestans with respect to the expected, observed and simulated during two field cycles in Chapingo, Mexico, with the objective of documenting and quantifying the progress of foliar infection by P. infestans in different lines of Tomato with different levels of resistance. As well as validate a predictive model. With the record of 10 years of meteorological data, five situations were predicted with four to ten cycles of infection from 8 to 13 h each. Compared to the predictions, the observed effect of area under the disease progress curve (AUDPC) and its components (RAUDPC and RaRAUDPC) were significant, with low coefficient of variation. It is concluded that among the expected, observed and simulated scenarios there is a close relationship to predict epidemics of P. infestans. This confirms that LATEBLIGHT is useful for simulating and predicting the late blight epidemic, under Chapingo atmospheric conditions.

Keywords


Resistance; Susceptibility; Lateblight; Scenario of infection

Full Text:

PDF

References


Alarcón-Rodríguez NM, Valadez-Moctezuma E and LozoyaSaldaña H. 2014. Molecular Analysis of Phytophthora infestans (Mont.) de Bary from Chapingo, Mexico. Phylogeographic Referential. American journal of potato research 91:459-466. DOI 10.1007/s12230-014-9375-y

Andrade-Piedra JL, Hijmans RJ, Forbes GA, Fry WE and Nelson RJ. 2005a. Simulation of potato late blight in the Andes I: Modification and parameterization of the LATEBLIGHT model. Phytopathology 95:1191–1199. DOI: 10.1094/PHYTO-95-1191

Andrade-Piedra JL, Hijmans RJ, Juarez HS, Forbes GA, Shtienberg D and Fry WE. 2005b. Simulation of potato late blight in the Andes II: Validation of the LATEBLIGHT model. Phytopathology 95:1200–1208. DOI: 10.1094/ PHYTO-95-1200

Andrade-Piedra JL, Forbes GA, Shtienberg D, Grünwald NJ, Chacon MG, Yaipe MV, Hijmans RJ and Fry WE. 2005c. Qualification of a plant disease simulation model: Performance of the LATEBLIGHT model across a broad range of environments. Phytopathology 95:1412–1422. DOI: 10.1094/PHYTO-95-1412

Berdúo-Sandoval JE, Ruiz-Chután JA and Sanchéz-Pérez A. 2019. Evaluación de la resistencia de genotipos de tomate frente a aislados de Phytophthora infestans provenientes de Guatemala. Ciencia, Tecnología y Salud 6:36-47. https://digi.usac.edu.gt/ojsrevistas/index.php/cytes/article/ view/672/562

Bonierbale MW, Haan SD, Forbes A and Bastos C. 2010. Procedimientos para pruebas de evaluacion estandar de clones avanzados de papa: Guia para cooperadores internacionales. 151pp. https://cgspace.cgiar.org/bitstream/ handle/10568/73221/73331.pdf?sequence=2

Bostock RM, Pye MF and Roubtsova TV. 2014. Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annual review of phytopathology 52:517-549. DOI.org/10.1146/annurevphyto-081211-172902

Cadena-Hinojosa MA, Diaz-Valasis M, Guzman-Plazola RA, Fernandez-Pavia S and Grunwald NJ. 2007. Late blight resistance of five mexican potato cultivars in the eastern sierra of the state of the Mexico. American Journal of Potato Research 84:385–392. https://pubag.nal.usda.gov/pubag/ downloadPDF.xhtml?id=13571&content=PDF

Childers R, Danies G, Myers K, Fei Z, Small IM and Fry WE. 2015. Acquired Resistance to Mefenoxam in Sensitive Isolates of Phytophthora infestans. Phytopathology 105:342– 349. dx.DOI.org/10.1094/PHYTO-05-14-0148-R

Collinge DB, Jorgensen HJ, Lund OS and Lyngkjaer MF. 2010. Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathology 48:269–291. DOI.org/10.1146/annurevphyto-073009-114430

Danies G, Small IM, Myers K, Childers R and Fry WE. 2013. Phenotypic Characterization of Recent Clonal Lineages of Phytophthora infestans in the United States. Plant Disease 97:873–881. dx.DOI.org/10.1094/PDIS-07-12-0682-RE

Díaz CJB, Lozoya-Saldaña H, Sahagún-Castellanos J and Peña-Lomelí A. 2014. The Pathosystem Solanum tuberosum L.-Phytophthora infestans (Mont.) de Bary in Chapingo, Mexico. Expected, Observed, and Simulated. American journal of potato research 91:312-326. DOI 10.1007/ s12230-013-9351-y

Dudler R. 2013. Manipulation of host proteasomes as a virulence mechanism of plant pathogens. Annual Review of Phytopathology 51:521–42. DOI.org/10.1146/annurevphyto-082712-102312

Forbes GA, Fry WE, Andrade-Piedra JL and Shtienberg D. 2008. Simulation models for potato late blight management and ecology. Integrated management of diseases caused by fungi, phytoplasma and bacteria. Pp: 161–177. Springer, Dordrecht.

Fry WE. 1978. Quantification of general resistance of potato cultivars and fungicide effects for integrated control of late blight. Phytopathology 68:1650–1655. https:// www.apsnet.org/publications/phytopathology/backissues/ Documents/1978Articles/Phyto68n11_1650.PDF

García E. 1987. Modificaciones al Sistema de Clasificación Climática de Koppen para adaptarlo a condiciones de México. Editorial de la Universidad Nacional Autónoma de México (UNAM). Distrito Federal de México. 246 pp.

Henfling JW. 1987. Late blight of potato: Phytophthora infestans. Technical information bulletin 4. International Potato Center, Lima, Peru. (Second edition, revised). 25 pp. https://books.google.com.mx/books

Hu CH, Perez FG, Donahoo R, McLeod A, Myers K, Ivors K, Ristaino JB. 2012. Recent Genotypes of Phytophthora infestans in the Eastern United States Reveal Clonal Populations and Reappearance of Mefenoxam Sensitivity. Plant Disease 96:1323–1330. dx.DOI.org/10.1094/PDIS-03-110156-RE

Iglesias I, Escudero O, Seijo C and Mendez J. 2010. Phytophthora infestans prediction for a potato crop. American Journal of Potato Research 87:32–40. DOI 10.1007/ s12230-009-9114-y

Johnson DA, Cummings TF, Ghanem RA and Alldredge JR. 2009. Association of solar irradiance and days of precipitation with incidence of potato late blight in the semiarid environment of the Columbia Basin. Plant disease 93:272280. DOI:10.1094/PDIS-93-3-0272

Johnson ACS, Jordan SA, Gevens AJ, Pathology P and Madison W. 2015. Efficacy of Organic and Conventional Fungicides and Impact of Application Timing on Control of Tomato Late Blight Caused by US-22, US-23 and US-24 Isolates of Phytophthora infestans. Plant Disease 99:641– 647. DOI.org/10.1094/PDIS-04-14-0427-RE

Kamoun S and Smart CD. 2005. Late blight of potato and tomato in the genomics era. Plant Disease 89:692–699. DOI: 10.1094/PD-89-0692

Leyva-Mir SG, González-Solano CM, Rodríguez-Pérez JE and Montalvo-Hernández D. 2013. Behavior of advanced lines of tomato (Solanum lycopersicum L.) to phytopathogens at Chapingo, Mexico. Revista Chapingo. Serie Horticultura 19:301-313. DOI: 10.5154/r.rchsh.2012.12.070

Morales W, Taipe P and Forbes GA. 2011. Concentracion e infeccion de esporangios de Phytophthora infestans (Mont.) de Bary en pre-emergencia de tuberculos de papa (Solanum tuberosum). https://cgspace.cgiar.org/bitstream/handle/10568/67656/74877.pdf?sequence=1

Nowicki M, Foolad MR, Nowakowska M and Kozik EU. 2012. Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Disease 96:4-17. dx.DOI.org/10.1094/ PDIS-05-11-0458

Ojiambo PS, Gent DH, Quesada-Ocampo LM, Hausbeck MK and Holmes GJ. 2015. Epidemiology and Population Biology of Pseudoperonospora cubensis : A Model System for Management of Downy Mildews. Annual Review of Phytopathology 53:223–246. DOI.org/10.1146/annurevphyto-080614-120048

SAS Institute Inc. Cary. 2002. SAS Online Doc® 9. Cary, NC: SAS Institute Inc.

Saville A, Graham K, Grünwald NJ, Myers K, Fry WE and Ristaino JB. 2015. Fungicide Sensitivity of U.S. Genotypes of Phytophthora infestans to Six Oomycete-Targeted Compounds. Plant Disease 99:659–666. DOI.org/10.1094/ PDIS-05-14-0452-RE

Schornack S, Moscou MJ, Ward ER and Horvath DM. 2013. Engineering Plant Disease Resistance Based on TAL Effectors. Annual Review of Phytopathology 51:383–406. DOI..org/10.1146/annurev-phyto-082712-102255

Shaner G and Finney RE. 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051-1056.

Skelsey P, Rossing WAH, Kessel GJT and Van der Werf W. 2009. Scenario approach for assessing the utility of dispersal information in decision support for aerially spread plant pathogens, applied to Phytophthora infestans. Phytopathology 99:887–895. DOI:10.1094/PHYTO-99-7-0887

Skelsey P, Rossing WAH, Kessel GJT and Van der Werf W. 2010. Invasion of Phytophthora infestans at the landscape level: how do spatial scale and weather modulate the consequences of spatial heterogeneity in host resistance? Phytopathology 100:1146–1161. DOI.org/10.1094/ PHYTO-06-09-0148

Taipe A, Forbes G and Andrade-Piedra J. 2011. Estimacion del nivel desusceptibilidad a Phytophthora infestans en genotipos de papa. https://cgspace.cgiar.org/bitstream/handle/10568/67655/74876.pdf?sequence=1&isAllowed=y

Yuen JE and Forbes GA. 2009. Estimating the level of susceptibility to Phytophthora infestans in potato genotypes. Phytopathology 99:782–786. DOI:10.1094/ PHYTO-99-6-0782

Yuen J and Mila A. 2015. Landscape-scale disease risk quantification and prediction. Annual Review of Phytopathology 53:471–484. DOI: 10.1146/annurevphyto-080614-120406

Zhan J and McDonald BA. 2013. Experimental measures of pathogen competition and relative fitness. Annual Review of Phytopathology 51:131–53. DOI.org/10.1146/annurevphyto-082712-102302.




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1910-5

Refbacks

  • There are currently no refbacks.