Graft response of Capsicum chinense-Capsicum annuum var. glabriusculum to Begomovirus in field

Reyna Zulemy Navarrete-Mapen, Jairo Cristóbal-Alejo, Alberto Uc-Várguez, Arturo Reyes-Ramírez, José María Tun-Suárez, Carlos Juan Alvarado-López

Abstract


One of the phytosanitary problems in the cultivation of pepper is the whitefly, begomovirus transmitter. Given the need for alternatives, the objective was to evaluate graft tolerance of Capsicum chinense-Capsicum annuum var. glabriusculum to begomovirus under field conditions. Two creole materials were used for rootstock (amashito and muela) and habanero pepper as graft (criollo and jaguar). The “terminal plectrum” graft was used and six treatments were generated. The whitefly populations, the incidence and severity of the disease were recorded every 10 days, with the latter AUDPC were calculated and apparent infection rate Yfinal. In the production stage, yield, length and diameter of fruits it was determined. At 130 days after transplantation, the population under whitefly, it was quantified in the grafted treatments (muela + habanero jaguar, amashito + habanero jaguar, muela + habanero criollo y amashito + habanero criollo) that ranged from 5.5 to 14.5 insects per plant. The increased incidence and severity of virus was average in habanero jaguar with 100 and 62%. The lowest AUDPC, apparent infection rate and Yfinal were estimated in muela + habanero criollo with 746.6 (% per day), 0.0050 (% per day) and 23.4%, in their order; associated with the genetic strength of the rootstock. The grafts amashito + habanero jaguar, amashito + habanero criollo y muela + habanero criollo showed better agronomic performance and productivity of the crop.

Keywords


rootstocks; tolerance; virosis; whitefly; chili peppe

Full Text:

PDF

References


Acevedo J y Sánchez C. 2017. Eficiencia del uso de portainjerto sobre el rendimiento y dinámica nutricional foliar de macronutrientes en pimiento morrón. Revista Mexicana de Ciencias Agrícolas 8: 685-693. http://www. https://www.redalyc.org/articulo.oa?id=263150932016.

Brown JK, Zerbini FM, Navas-Castillo J, Moriones E, Ramos-Sobrinho R, Silva JCF, Fiallo-Olivé E, Briddon RW, Hernández-Zepeda C, Idris A, Malathi VG, Martin DP, Rivera-Bustamante R, Ueda S and Varsani A. 2015. Revision of begomovirus taxonomy based on pairwise sequence comparisons. Archives of Virology.6:15931619.https://doi.org/10.1007/s00705-015-2398-y.e

Cortes H. 2010. Resistencia a insectos de tomate injertado en parientes silvestres, con énfasis en Bactericera cockerelli Sulc. (Hemiptera: Psilidae). Bioagro 22:11-16. https://www.redalyc.org/articulo.oa?id=85716706002.

Di Gioia F, Serio F, Buttaro D, Ayala O and Santamaria P. 2010. Influence of rootstock on vegetable growth, fruit yield and quality in “cuore di bue”, an heirloom tomato. Journal of Horticultural Science and Biotechnology 85:477-482. https://doi.org/org/10.1080/14620316.2010.11512701.

Fuentes I, Stegemann S, Golczyk H, Karcher D and Bock R. 2014. Horizontal genome transfer as an asexual path to the formation of new species. Nature 00:1-4. DOI. 10.1038/nature13291.

García M, Trejo D y Rivera R. 2010. Veinte años de investigación con Geminivirus en vegetales en Guanajuato. Acta Universitaria. 3:84-92. https://doi.org/10.15174/au.2010.64.

George D, Banfield J, Collier R, Cross J, Birch A, Gwynn R and Neill T. 2015. Identification of novel pesticides for use against glasshouse invertebrate pests in UK tomatoes and peppers. Insects 6:464. https://doi.org/10.3390/insects6020464.

Grimault V, Lie B, Lemattre M, Prior P and Schmit J. 1994. Comparative histology of resistant and susceptible tomato cultivars infected by Pseudomonas solanacearum. Physiological and Molecular Plant Pathology 44:105-123. https://www.academia.edu/29584807.

Mora A, Rivas V, Góngora C, Tovar S, Cristóbal J, Loeza K, Michereff J, Marinelli A y Osada V. 2000. Sistemas computarizados en epidemiología: 2-Log ver. 1.0 y su aplicación en el diseño de escalas diagramáticas logarítmicas. XXIX Simposio Nacional de Parasitología Agrícola. Puerto Vallarta, México.

Morales F. 2011. Interaction between Bemisia tabaci, Begomoviruses and plant species in Latin America and the Caribbean. In: Thompson, W. (ed). The Whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) Interaction whith Geminiviruses-Infected Host plants. Netherlands. pp. 15-49. https://links.springer.com/chapter/10.1007%2F978-94-007-1524-0_2.

Sánchez E, Torres A, Flores M, Preciado P y Márquez C. 2015. Uso de portainjerto sobre el rendimiento, calidad del fruto y resistencia a Phytophthora capsici Leonian en pimiento morrón. Nova Scientia 7:227-244. https://www.redalyc.org/pdf/2033/203342741014.pdf.

Spoustová P, H´ysková V, Müller K, Schnablová R, Ry?slavá H, Ce?rovská N, Malbeck J, Cvikrová M and Synková H. 2015. Tobacco susceptibility to Potato virus YNTN infection is affected by grafting and endogenous cytokinin content. Plant Science 235: 25–36. https://doi.org/10.1016/j.plantsci.2015.02.017.

Villanueva H, Us R, López L, Robertson D, Guerra O, Minero Y and Moreno O. 2013. A new virus-induced gene silencing vector based on Euphorbia mosaic virus-Yucatan peninsula for NPR1 silencing in Nicotiana benthamiana and Capsicum annuum var. Anaheim. Biotechnology letters35: 811-823. https://doi.org/10.1007/s10529-013-1146-1.

Wang J, Zhang D and Fang Q. 2002. Studies on antivirus disease mechanism of grafted seedless watermelon. Journal of Anhui Agricultural College 29: 336-339. http://europepmc.org/article/cba/392005.

Winmer J, Inglis D and Mile C. 2015. Evaluating grafted watermelon for Verticillium wilt Severity, yield, and fruit quality in Washington State. Hortsciencie. 50:1332-1337. https://doi.org/10.21273/HORTSCI.50.9.1332.




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2001-2

Refbacks

  • There are currently no refbacks.