Interaction between Mycodiplosis and Hemileia vastatrix in three scenarios of coffee crop management (Coffea arabica)
Abstract
Keywords
Full Text:
PDFReferences
Arroyo EJ, Sánchez F and Barboza LA. 2018. Infection model for analyzing biological control of coffee rust using bacterial anti-fungal compounds. Mathematical Biosciences 307:13-24. https://doi.org/10.1016/j.mbs.2018.10.009.
Beldomenico MP and Begon M. 2009. Disease spread, susceptibility and infection intensity: vicious circles? Trends in Ecology and Evolution 25(1): 21-27. https://doi.org/10.1016/j.tree.2009.06.015
Brinate SVB, Martins LD, Pereira GNG, Cunha VV, Sotero A de J, Amaral JFT, Junior WCJ and Tomaz MA. 2015. Copper can influence growth, disease control and production in arabica coffee trees. Australian Journal of Crop Science 9(7): 678–683. https://search.informit.com.au/documentSummary;dn=357328620234232;res=IELHSS
CABI. 2018. Plantwise Knowledge Bank. Technical Factsheet: Coffee leaf rust Hemileia vastatrix. https://www.plantwise.org/KnowledgeBank/Datasheet.aspx?dsid=26865.
Coutinho TA, Rijkenberg FHJ and Van ASCH MAJ. 1994 The effect of leaf age on infection of Coffea genotypes by Hemileia vastatrix. Plant Patholgy 43(1):97-103. https://doi.org/10.1111/j.1365-3059.1994.tb00558.x
Davies NB. 2007. Capítulo 14. Depredación. Pp. 299 -326. In: Smith TM y Smith RL (eds.). Ecología. 6a edición. Pearson educación S.A, Madrid, España. 776 p. ISBN: 978-84-7829-084-0.
DGSV-SINAVEF-LANREF. 2016. Escalas de severidad de roya del café en hoja y planta. http://www.royacafe.lanref.org.mx/Documentos/EscalaSeveridadDefoliacionPlantayHoja.pdf
Haddad F, Maffia L, Mizubuti E and Texeira H. 2009. Biological control of coffee rust by antagonistic bacteria under field conditions in Brazil. Biological Control 49(2): 114-119. https://doi.org/10.1016/j.biocontrol.2009.02.004
Hajian-Forooshani Z, Rivera SIS, Jiménez SE, Perfecto I and Vandermeer J. 2016. Impact of regionally distinct agroecosystem communities on the potential for autonomous control of the coffee leaf rust. Journal of Environmental Entomology 45(6):1521-1526. https://doi.org/10.1093/ee/nvw125
Henderson PT. 2020. Elite-led development and Mexico’s independent coffee organisations in the wake of the rust epidemic, Third World Quarterly 41(6): 1012-1029, https://doi.org/10.1080/01436597.2020.1729726
Henk DA, Farr DF and Aime MC. 2011. Mycodiplosis (Diptera) infestation of rust fungi is frequent, wide spread and possibly host specific. Fungal ecology 4(4): 284-289. https://doi.org/10.1016/j.funeco.2011.03.006.
Holz, B. 1970: Revision in Mitteleuropa vorkommender mycophager Gallmücken der Mycodiplosis-Gruppe (Diptera, Cecidomyiidae) unter Berücksichtigung ihrer Wirtsspezifität. Unpubl. Thesis. Stuttgart: University of Stuttgart, 237 p.
Jackson D, Skillman J and Vandermeer J. 2012. Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem. Biological Control 61(1): 89-97. https://doi.org/10.1016/j.biocontrol.2012.01.004
Jagadish KS, Basavaraj K and Geetha S. 2017. Spatial distribution of the mycophagous ladybird predator, Illeis cincta (Fabricius) (Coleoptera Coccinellidae) in relation to powdery mildew disease in sunflower (Helianthus annuus L.) Canopy. Journal of Entomology and Zoology Studies 5(5): 331-334. http://www.entomoljournal.com/archives/?year=2017&vol=5&issue=5&ArticleId=2341
Kaushal K, Mishra AN, Varma PK, Kapoor KN and Pandey RN. 2001. Dipteran fly (Mycodiplosis sp): a natural bioagent for controlling leaf rust (Puccinia recondita var. tritici) of wheat (Triticum aestivum). Indian Journal of Agricultural Sciences 71(2): 136-138. https://www.researchgate.net/publication/292558955_Dipteran_fly_Mycodiplosis_sp_A_natural_bioagent_for_controlling_leaf_rust_Puccinia_recondita_tritici_of_wheat_Triticum_aestivum
Kiel. 2014. Gall midges (Díptera: Cecidomyiidae: Cecidomyiinae) of Germany -Faunistics, ecology and zoogeography by Marcela Skuhravá, Václav Skuhravÿ and Hans Mayer. Faunistisch-Ökologische Arbeitsgemeinschaft e.V. 38: 1-200. https://www.zobodat.at/pdf/Faun-Oekol-Mitt_Supp_38_0001-0200.pdf
Kluth S, Kruess A and Tscharntke T. 2001. Interactions between the rust fungus Puccinia punctiformis and ectophagous and endophagous insects on creeping thistle. Journal of Applied Ecology 38(3): 548-556. https://doi.org/10.1046/j.1365-2664.2001.00612.x
Loland J and Singh B. 2004. Copper contamination of soil and vegetation in coffee orchards after long-term use of Cu fungicides. Nutrient Cycling in Agroecosystems 69: 203-211. https://doi.org/10.1023/B:FRES.0000035175.74199.9a
Martínez M, Cerna R, Salinas H and Lizardo A. 2013. Guía de manejo de plagas: lista verde y amarilla. CABI. https://www.plantwise.org/FullTextPDF/2018/20187800210.pdf
Merle I, Pico J, Granados E, Boudrot A, Tixier P, de Melo E, Filho V, Cilas C and Avelino J. 2019. Unraveling the complexity of coffee leaf rust behavior and development in different Coffea arabica agro-ecosystems. Phytopathology 110(2): 418-427. https://doi.org/10.1094/PHYTO-03-19-0094-R
Nelsen DJ. 2013. A Phylogenetic Analysis of Species Diversity, Specificity, and Distribution of Mycodiplosis on Rust Fungi. Plant Pathology and Crop Physiology. LSU Master’s Theses. https://digitalcommons.lsu.edu/gradschool_theses/2700
Nutman F and Roberts F. 1963. Studies on the Biology of Hemileia vastatrix Berk. & Br. Trans British Mycological Society 46: 27-44. https://doi.org/10.1016/S0007-1536(63)80005-4
Rayner, R. 1961. Germination and Penetration studies on coffee rust (Hemileia vastatrix B. & Br.). Annals of Applied Biology 49(3): 497-505. https://doi.org/10.1111/j.1744-7348.1961.tb03641.x
SAGARPA-SENASICA. 2016. Roya del cafeto. Hemileia vastatrix (Barkeley & Broome) (Pucciniales: Chaconiaceae). Aviso público del riesgo y situación actual. 6 p. https://www.gob.mx/cms/uploads/attachment/file/172768/Aviso_p_blico_Roya_del_cafeto_2016.pdf
SAGARPA-SIAP. 2018. Atlas Agroalimentario 2012-2018. 50-51 pp. Primera edición. Ciudad de México. https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2018/
Atlas-Agroalimentario-2018. SMN-CNA. Servicio Meteorológico Nacional- Comisión Nacional del Agua. 2018. https://smn.cna.gob.mx/es/climatologia/informacion-climatologica/informacion-estadisticaclimatologica
Toniutti L, Breitler JC, Etienne H, Campa C, Doulbeau S, Urban L, Lambot C, Pinilla JCH and Bertrand B. 2017. Influence of environmental conditions and genetic background of arabica coffee (C. arabica L) on leaf rust (Hemileia vastatrix) pathogenesis. Frontiers in Plant Science 8: 2025. https://doi.org/10.3389/fpls.2017.02025
Tseng M and Myers JH. 2014. The relationship between parasite fitness and host condition in an insect-virus System. PLoS ONE 9(9): e106401. https://doi.org/10.1371/journal.pone.0106401
Vandermeer LK, Vandermeer JH and Perfecto I. 2016. Disentangling endogenous versus exogenous pattern formation in spatial ecology: a case study of the ant Azteca sericeasur in southern Mexico. Royal Society Open Science 3: 160073. https://doi.org/10.1098/rsos.160073
Vásquez-Bolaños M. 2011. Lista de especies de hormigas (Hymenoptera: Formicidae) para México. Dugesiana 18(1): 95-133. https://www.antwiki.org/wiki/images/3/3f/V%C3%A1squezBola%C3%B1os2011Mexico.pdf
Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular marine biology and biotechnology 3(5): 294-299. https://www.researchgate.net/publication/15316743_DNA_primers_for_amplification_of_mitochondrial_Cytochrome_C_oxidase_subunit_I_from_diverse_metazoan_invertebrates
DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2005-2
Refbacks
- There are currently no refbacks.