Biological control of Fusarium oxysporum causal agent of gladiolus corm rot by streptomycetes

Tania Ameyally Rios-Hernández, Alberto Uc-Varguez, Zahaed Evangelista-Martínez

Abstract


Fusarium oxysporum causes gladiolus corm rot and production damage could reach up to 100%. Fusarium isolates were selected from infected corms, one of them was morphologically and molecularly identified, and was selected from pathogenicity testing. One strain from 22 streptomycetes isolates that showed a 40% antagonist activity against Fusarium was selected. Bioactive extract (BE) was obtained by Solid Phase Fermentation and the minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined by the microdilution method. A MIC of 0.19 mg mL-1 and an MLC of 0.38 mg mL-1 were obtained, which was confirmed with a conidia germination test at 8 h, which showed inhibition percentage of 17 and 98% for ¼ and ½ of the MIC. The effect of BE was evaluated at 1 and 2 MIC’s concentration against corm rot in infected gladiolus corm, obtaining a protective effect of gladiolus corms and maintaining their hardness after 15 days, in comparison with the fungicide Carbendazim. These results indicate Streptomyces sp., as a potential biological control agent against F. oxysporum.

Keywords


Gladiolus grandiflorus; Actinobacterias; fungal activity; corms; protective effect

Full Text:

PDF

References


Alizadeh M, Vasebi Y and Safaie N. 2020. Microbial antagonists against plant pathogens in Iran: A review. Open Agriculture 5(1): 404-440. https://doi.org/10.1515/opag-2020-0031

Al-Hatmi AMS, de Hoog GS and Meis JF. 2019. Multiresistant Fusarium pathogens on plants and humans: solutions in (from) the antifungal pipeline? Infection and drug resistance 12: 3727-3737. https://doi.org/10.2147/IDR.S180912

Alburqueque D y Gusqui R. 2018. Eficacia de fungicidas qui?micos para el control in vitro de diferentes fitopato?genos en condiciones controladas. Arnaldoa 25(2): 489-498. https://doi.org/10.22497/arnaldoa.252.25209

Barua P, You MP, Bayliss K, Lanoiselet V and Barbetti MJ. 2017. A rapid and miniaturized system using Alamar blue to assess fungal spore viability: implications for biosecurity. European journal of plant pathology 148:139–150. https://doi.org/10.1007/s10658-016-1077-5

Betancourt-Resendes I, Velázquez-Monreal JJ, Montero-Castro JC, Fernández-Pavía SP, Lozoya-Saldaña H y Rodríguez-Alvarado G. 2012. Fusarium mexicanum Agente causal de la malformación del mango en Jalisco, México. Revista Mexicana de Fitopatología 30:115-127. http://www.redalyc.org/articulo.oa?id=61230188002

Cordova-Albores LC, Zapotitla ES, Ríos MY, Barrera-Necha LL, Hernández-Lopez M y Bautista-Baños S. 2016. Microscopic study of the morphology and metabolic activity of Fusarium oxysporum f. sp. gladioli treated with Jatropha curcas oil and derivatives. Journal of Microscopy and ultraestructure 4: 28-35. https://doi.org/10.1016/j.jmau.2015.10.004

CLSI. 2017. Performance standards for antimicrobial susceptibility testing. 27th ed. CLSI supplement M100. Clinical and laboratory standards institute; Wayne, Pennsylvania USA. 282p. http://file.qums.ac.ir/ repository/mmrc/clsi%202017.pdf

Danial AM, Medina A, Sulyok M and Magan N. 2020. Efficacy of metabolites of a Streptomyces strain (AS1) to control growth and mycotoxin production by Penicillium verrucosum, Fusarium verticillioides and Aspergillus fumigatus in culture. Mycotoxin Research 36: 225–234. https://doi.org/10.1007/s12550-020-00388-7

Dikhoba P, Mongalo N, Elgorashi and Makhafola T. 2019. Antifungal and anti-mycotoxigenic activity of select South African medicinal plant species. Heliyon 5(10): https://doi.org/10.1016/j.heliyon.2019.e02668

Elmer WH and Kamo KK. 2018. Diseases of Gladiolus. Pp. 1289-1311 In: McGovern R., Elmer W. (eds) Handbook of Florists´ Crops Diseases. Handbook of Plant Disease Management. Springer, Cham. https://doi.org/10.1007/978-3-319-39670-5-47

Evangelista-Martínez Z. 2014. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World Journal of Microbiology and Biotechnology 30(5):1639-1647. https://doi.org/10.1007/s11274-013-1568-x

Evangelista-Martínez Z, Contreras-Leal EA, Corona-Pedraza LF and Gastelum-Martínez E. 2020. Biocontrol potential of Streptomyces sp. CACIS-1.5CA against phytopathogenic fungi causing postharvest fruit diseases. Egyptian Journal of Biological Pest Control 30: 117. https://doi.org/10.1186/s41938-020-00319-9

FRAC. 2019. FRAC Clasificación de fungicidas y bactericidas según el modo de acción. Primera edición, España. https://www.syngenta.es/sites/g/files/zhg516/f/2019/04/clasificacion-fungicidas-bactericidas-segun-modo-accion.pdf

González-Pérez E, Yáñez-Morales MJ, Ortega-Escobar HM and Velázquez-Mendoza J. 2009. Comparative analysis among pathogenic fungal species that cause gladiolus (Gladiolus grandiflorus Hort.) corm rot in Mexico. Revista Mexicana de Fitopatología 27(1): 45-52. https://www.redalyc.org/articulo.oa?id=61211414006

Goredema N, Ndowora T, Shoko T and Ngadze E. 2020. In vitro suppression of pathogenic fungi by Streptomyces spp. African crop science Journal 28(2): 141-149. https://doi.org/10.4314/acsj.v28i2.1

Hafizi R, Salleh B and Lattifah Z. 2013. Morphological and molecular characterization of Fusarium solani and F. oxysporum associated with crown disease of oil palm. Brazilian Journal of Microbiology 44(3): 959-968. https://doi.org/10.1590/s1517-83822013000300047

He M-H, Li D-L, Zhu W, Wu E-J, Yang L-N, Wang YP, Waheed A and Zhan J. 2017. Slow and temperature-mediated pathogen adaptation to a nonspecific fungicide in agricultural ecosystem. Wiley Evolutionary Aplications. https://doi.org/10.1111/eva.12526

Herkert P, Al-Hatmi A, Salvador G, Muro M, Pinheiro R, Nucci M, Queiros-Telles F, Hoog G. and Meis J. 2019. Molecular characterization and antifungal susceptibility of clinical Fusarium oxysporum species from Brazil. Frontiers in Microbiology 10: 737. https://doi.org/10.3389/fmicb.2019.00737

Hima-Bindu BSSN, Muvva V, Munaganti RK, Naragani K, Konda S and Dorigondla KR. 2017. Production of antimicrobial metabolites by Streptomyces lavendulocolor VHB-9 Isolated from Granite Mines. Brazilian Archives of Biology and Technology 60: https://doi.org/10.1590/1678-4324-2017160385

Khan MR, Shahid S, Mohidin FA and Mustafa U. 2017. Interaction of Fusarium oxysporum and Meloidogyne incognita on gladiolos cultivars and its management through corm treatment with biopesticides and pesticides. Biological Control 115: 95-104. https://doi.org/10.1016/j.biocontrol. 2017.09.010

Leslie JF, Summerell BA and Bulloc S. 2006. The Fusarium laboratory manual. First edition. Ed. Blackwell Publishing Iowa, USA. 388p. https://doi.org/10.1002/9780470278376

Marx-Stoelting P, Knebel C and Braeuning A. 2020. The connection of Azole fungicides with xeno-sensing nuclear receptors, drug metabolism and hepatotoxicity. Cells 9(5): 1192. https://doi.org/10.3390/cells9051192

Michel-Aceves AC, Ariza-Flores R, Otero-Sánchez MO, Barrios-Ayala A y Quiroz-Millán AM. 2014. Efectividad in vitro e in situ de fungicidas químicos y biológicos en el control de Fusarium oxysporum f. sp. gladioli y Uromyces transversalis en gladiola. AP Agroproductividad 7: 3-11. https://core.ac.uk/download/pdf/249320317.pdf

Mirabent R. 2012. Adyuvantes para Fungicidas. Phytoma España: La Revista professional de Sanidad Vegetal 240: 64-65. https://www.phytoma.com/images /240empresasfungicidas _croda.pdf

Morales-Pe?rez AA, Franco-Mora O, Castan?eda-Vildozola A and Morales-Rosales EJ. 2014. The anti-senescence effect of resveratrol reduces postharvest softening rate in cherimoya fruit. Scientia Agropecuaria 5: 35-44. http://dx.doi.org/10.17268/sci.agropecu.2014.01.04

Nguyen PA, Strub C, Lagrée M, Bertrand-Michel J, Schorr-Galindo S and Fontana A. 2020. Study of in vitro interaction between Fusarium verticillioides and Streptomyces sp. using metabolomics. Folia Microbiológica 65: 303-314. https://doi.org/10.1007/s12223-019-00725-z

O´Donell K and Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types whitin a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular phylogenetics and Evolution 7(1): 103-16. https://doi.org/10.1006/mpev.1996.0376

Pedroza RR, Ribeiro WS, Silva SM, Finger FL, Zanuncio JC, Correa EB, Fugate KK, Bezerra da Costa F and Araujo RH. 2019. Healing of Gladiolus grandiflora corms under refrigeration and Fusarium oxysporum infection. Plant Signaling & Behavior 14(10). https://doi.org/10.1080/15592324.2019.1652520

Pérez-Rojas F, León-Quispe J y Galindo-Cabello N. 2015. Actinomicetos aislados del compost y su actividad antagonista a fitopatógenos de la papa (Solanum tuberosum spp. andigena Hawkes). Revista Mexicana de Fitopatología 33(2): 116-139. http://www.redalyc.org/articulo.oa?id=61242145001

SIAP (Servicio de Información agrícola y pesquera), 2020. Anuario estadístico de la producción agrícola 2020. https://www.gob.mx/siap. Julio 2021

Tlemsani M, Fortas Z, Dib S and Bellahcen M. 2020. In vitro antagonism between actinomycete isolates and Fusarium oxysporum f. sp. ciceri: The causative agent of chickpea vascular wilt. South Asian Journal of Experimental Biology 10(4): 255-267. https://doi.org/10.38150/sajeb.10 (4). p255-267

Uc-Varguez A, López-Puc G, Góngora-Canul C, Martinez-Sebastián M and Aguilera-Cauich EA. 2018. Spatio-temporal spread of foot rot (Lasiodiplodia theobromae) in Jatropha curcas L. plantations in Yucatán, México. European Journal plant pathology 150: 991-1000. https:// doi.org/10.1007/s10658-017-1338-y

Kim YJ, Kim JH and Rho JY. 2019. Antifungal activities of Streptomyces blastmyceticus strain 12-6 against plant pathogenic fungi. Mycobiology 47(3): 329-334. https://doi.org/ 10.1080/12298093.2019.1635425

Shrestha U, Dee ME, Piya S, Ownley BH, and Butler DM. 2020. Soil inoculation with Trichoderma asperellum, T. harzianum or Streptomyces griseoviridis prior to anaerobic soil disinfestation (ASD) does not increase ASD efficacy against Sclerotium rolfsii germination. Applied soil ecology 147: 103383. https://doi.org/10.1016/j.apsoil.2019.10338

Zhang X, Wang H, Zhu W, Li W and Wang F. 2020. Transcriptome analysis reveals the effects of chinese chive (Allium tuberosum R.) extract on Fusarium oxysporum f. sp. radicis?lycopersici spore germination. Current Microbiology 77: 855-864. https://doi.org/10.1007/s00284-020-01875-x




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2105-3

Refbacks

  • There are currently no refbacks.