Potential biocontrol mechanisms of Bacillus sp. TSO2 against Bipolaris sorokiniana, spot blotch in wheat
Abstract
Bipolaris sorokiniana is a pathogen of cereals such as wheat and barley, causing root rot, leaf blight, seedling blight, and spot blotch. This phytopathogen causes a considerable reduction in cereal yield of up to 85%. Thus, sustainable alternatives to the application of synthetic fungicides are determinants for the control of phytopathogens, such as the application of biological control agents. This study aims to identify the potential biocontrol mechanisms of the bacterial strain TSO2 by sequencing, annotation, and mining its genome. The draft genome of strain TSO2 was sequenced through the Illumina Miseq platform and presented 4,242,212 bp, 43.9% G+C content, 300,069 bp N50, 5 L50, 47 contigs, 96 RNAs, and 4,432 predicted coding DNA sequences. Besides, the presence of 86 CDS of agricultural importance involved in virulence, disease, defense, iron acquisition, and secondary and phosphate metabolisms was detected. On the other hand, seven putative secondary metabolite gene clusters involved in biocontrol activity were identified in the genome of strain TSO2. Bacillus sp. TSO2 contains a great number of biosynthetic gene clusters which supports its biocontrol activity against phytopathogenic fungi. Thus, this strain needs to be further studied as a potential bioactive ingredient for the biopesticide formulation due to its high potential as a biological control agent.
Keywords
Full Text:
PDFReferences
Ahmad M, Pataczek L, Hilger TH, Zahir ZA, Hussain A, Rasche F, Schafleitner R and Solberg SØ. 2018. Perspectives of Microbial Inoculation for Sustainable Development and Environmental Management. Frontiers in Microbiology 9:2992. https://doi.org/10.3389/fmicb.2018.02992
Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. (Consulted October 2021).
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SL, Pham s, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal Computational Biology 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021
Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH and Weber T. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities, Nucleic Acids Research 49(w1): w39-w45. https://doi.org/10.1093/nar/gkab335
Bolger AM, Lohse M and Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, Aarestrup FM and Hasman H. 2014. PlasmidFinder and pMLST: in silico detection and typing of plasmids. Antimicrob Agents Chemother 58(7):3895-903. https://doi.org/10.1128/AAC.02412-14
Córdova-Albores LC, Zelaya-Molina LX, Ávila-Alistac N, Valenzuela-Ruíz V, Cortés-Martínez NE, Parra-Cota FI, Burgos-Canul YY, Chávez-Díaz IF, Fajardo-Franco ML, de los Santos-Villalobos S. 2020. Omics Sciences Potential on Bioprospecting of Biological Control Microbial Agents: The Case of the Mexican Agro-Biotechnology. Mexican Journal of Phytopathology 39: 1–38. https://doi.org/10.18781/r.mex.fit.2009-3.
Darling AC, Mau B, Blattner FR and Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research 14(7):1394-1403. https://doi.org/10.1101/gr.2289704
de los Santos-Villalobos S, Parra-Cota FI, Herrea-Sepulveda A, Valenzuela-Aragon B y Estrada-Mora JC. 2018. Colmena: colección de microorganismos edáficos y endófitos nativos, para contribuir a la seguridad alimentaria nacional. Revista Mexicana de Ciencias Agrícolas 9(1): 191-202. http://dx.doi.org/10.29312/remexca.v9i1.858
de los Santos-Villalobos S, Díaz-Rodríguez AM, Ávila-Mascareño MF, Martínez-Vidales AD, Parra-Cota FI. 2021. COLMENA: A Culture Collection of Native Microorganisms for Harnessing the Agro-Biotechnological Potential in Soils and Contributing to Food Security. Diversity 13: 1-13. https://doi.org/10.3390/d13080337
de los Santos-Villalobos S, Robles RI, Parra-Cota FI, Larsen J, Lozano P and Tiedje JM. 2019. Bacillus cabrialesii sp. nov., an endophytic plant growth promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) in the Yaqui Valley, Mexico. International journal of systematic and evolutionary microbiology 69(12). https://doi.org/10.1099/ijsem.0.003711
Ezrari S, Mhidra O, Radouane N, Tahiri A, Polizzi G, Lazraq A, Lahlali R. 2021. Potential Role of Rhizobacteria Isolated from Citrus Rhizosphere for Biological Control of Citrus Dry Root Rot. Plants 10 (872): 1-25. https://doi.org/10.3390/plants10050872
González-Pastor J. 2010. Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiology Reviews 35: 415–424. https://doi.org/10.1111/j.1574-6976.2010.00253.x
Grant JR and Stothard P. 2008. The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181–W184. https://doi.org/10.1093/nar/gkn179.
Koumoutsi A, Chen X-H, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J and Borriss R. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology 186: 1084–1096. https://doi.org/https://doi.org/10.1128/JB.186.4.1084–1096.2004
Li H, Han X, Dong Y, Xu S, Chen C, Feng Y, Cui Q and Li W. 2021. Bacillaenes: Decomposition Trigger Point and Biofilm Enhancement in Bacillus. ACS Omega 6: 1093?1098. https://doi.org/10.1021/acsomega.0c03389
Mehta YR. 2014. Foliar and stem diseases. 133–216p. In: Mehta YR. (Ed.). Wheat diseases and their management. Springer, Cham.
Mulligan CN. 2005. Environmental applications for biosurfactants. Environmental Pollution 133: 183–198. https://doi.org/https://doi.org/10.1016/j.envpol.2004.06.009
Nannan C, Vu HQ, Gillis A, Caulier S, N TTT and Mahillo J. 2021. Bacilysin within the Bacillus subtilis group: gene prevalence versus antagonistic activity against Gram-negative foodborne pathogens. Journal of Biotechnology 327: 28-35. https://doi.org/10.1016/j.jbiotec.2020.12.017
Nithyapriya S, Lalitha S, Sayyed RZ, Reddy MS, Dailin DJ, El Enshasy HA, Luh Suriani N and Herlambang S. 2021. Production, Purification, and Characterization of Bacillibactin Siderophore of Bacillus subtilis and Its Application for Improvement in Plant Growth and Oil Content in Sesame. Sustainability 13: 5394. https://doi.org/ 10.3390/su13105394
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T. et al., 2013. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research 42: D206–D214. https://doi.org/10.1093/nar/gkt1226
Valenzuela-Aragon B, Parra-Cota FI, Santoyo G, Arellano-Wattenbarger GL, de Los Santos-Villalobos S. 2018. Plant assisted selection: a promising alternative for in vivo identification of wheat (Triticum turgidum L. subsp. Durum) growth promoting bacteria. Plant Soil 435:367-384.
Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA, Estrada-Alvarado MI, Parra-Cota FI, De los Santos Villalobos S. 2018. El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicna de Fitopatología 36(1):95-130. https://doi.org/10.18781/r.mex.fit.1706-5
Villa-Rodríguez E, Parra-Cota FI, Castro-Longoria E, López-Cervantes J and de los Santos-Villalobos S. 2019. Bacillus subtilis TE3: a promising biological control agent against Bipolaris sorokiniana, the causal agent of spot blotch in wheat (Triticum turgidum L. subsp. durum). Biological Control 132:135-143. https://doi.org/10.1016/j.biocontrol.2019.02.012
DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2201-1
Refbacks
- There are currently no refbacks.