Phytochemical profile and in vitro activity of Agave angustifolia and A. cupreata extracts against phytopathogenic fungi

Anayareth Almazán-Morales, Ma. Elena Moreno-Godínez, Elías Hernández-Castro, Mirna Vázquez-Villamar, José Antonio Mora-Aguilera, Eugenia Cabrera-Huerta, Patricia Alvarez-Fitz

Abstract


Phytopathogenic fungi can cause economic losses. The application of natural products from species of the genus Agave is an alternative for controlling these organisms. The present study aimed to determine the phytochemical profile of Agave angustifolia and A. cupreata extracts and to evaluate their antifungal activity against several species of phytopathogenic fungi. The aqueous extract from A. angustifolia and the acetonic extract from A. cupreata were studied. The phytochemical profile was determined by thin-layer chromatography. Mycelial growth inhibition and spore production were evaluated. Phytochemical screening revealed the presence of alkaloids, flavonoids, saponins, and triterpenes. The acetonic extract of A. cupreata inhibited 76, 60, and 59% of the mycelial growth of Lasiodiplodia viticola, Colletotrichum sp., and Epicoccum sorghinum, respectively, at 8 and 16 mg mL-1 (p?0.05), while spore production decreased by 92 and 86 % (p?0.001) for Fusarium subglutinans and Colletotrichum sp., respectively. The aqueous extract of A. angustifolia inhibited 40% of the mycelial growth of E. sorghinum at 16 mg mL-1 (p?0.05) and reduced the spore production of L. viticola by 35% (p?0.001). The results indicate that the extracts under study can be an alternative source of antifungal compounds.

Keywords


Agave; phytopathogenic fungi; in vitro inhibition

Full Text:

PDF

References


Achimón F, Brito VD, Pizzolitto RP, Ramirez-Sanchez A, Gomez EA and Zygadlo JA. 2020. Chemical composition and antifungal properties of commercial essential oils against the maize phytopathogenic fungus Fusarium verticillioides. Revista Argentina de Microbiología. https://doi.org/10.1016/j.ram.2020.12.001

Ahumada-Santos YP, Montes-Ávila J, Uribe-Beltrán M. de J, Díaz-Camacho SP, López-Angulo G, Vega-Aviña R and Delgado-Vargas F. 2013. Chemical characterization, antioxidant, and antibacterial activities of six Agave species from Sinaloa, Mexico. Industrial Crops and Products 49:143-149. https://doi.org/10.1016/j.indcrop.2013.04.050

Asael RGH, Guevara-Gonzalez RG, de Jesus RGS and Angelica FPA. 2018. Antifungal activity of mexican endemic plants on agricultural phytopathogens: a review. XIV International Engineering Congress (CONIIN), Engineering Congress (CONIIN), 2018 XIV International.1-11. https://doi.org/10.1109/CONIIN.2018.8489793

Barrientos Rivera G, Esparza Ibarra EL, Segura Pacheco HR, Talavera Mendoza O, Sampedro Rosas ML and Hernández Castro E. 2019. Caracterización morfológica de Agave angustifolia y su conservación en Guerrero, México. Revista Mexicana de Ciencias Agrícolas 10(3): 655-668. https://doi.org/10.29312/remexca.v10i3.1554

Bui NT, Pham TLT, Nguyen KT, Le PH and Kim KH. 2021. Effect of extraction solvent on total phenol, flavonoid content, and antioxidant activity of Avicennia officinalis. Biointerface Research in Applied Chemistry 12(2): 2678-2690. https://doi.org/10.33263/BRIAC122.26782690

Camacho-Campos C, Pérez-Hernández Y, Valdivia-Ávila A, Rubio-Fontanills and Fuentes-Alfonso L. 2020. Evaluación fitoquímica, antibacteriana y molusquicida de extractos de hojas de Agave spp. Revista Cubana de Química 32(3): 390-405. https://www.researchgate.net/publication/352712851_Evaluacion_fitoquimica_antibacteriana_y_molusquicida_de_extractos_de_hojas_de_Agave_spp/link/619ba7423068c54fa5114323/download

da Silva, PPM, de Oliveira J, Biazotto A dos M, Parisi MM, da Glória EM and Spoto MHF. 2020. Essential oils from Eucalyptus staigeriana F. Muell. Ex Bailey and Eucalyptus urograndis W. Hill ex Maiden associated to carboxymethyl cellulose coating for the control of Botrytis cinerea Pers, Fr. and Rhizopus stolonifer (Ehrend, Fr) Vuill in strawberries. Industrial Crops and Products 156. https://doi.org/10.1016/j.indcrop.2020.112884

De la Cruz-Ricardez D, Ortiz-García CF, Lagunes-Espinoza L del C and Torres de la Cruz, M. 2020. Efecto antifúngico de extractos metanólicos de Capsicum spp. en Moniliophthora roreri. Agro-Ciencia 54(6): 813-824. https://doi.org/10.47163/agrociencia.v54i6.2186

De Oliveira FJG, Silva G da C, Cipriano L, Gomes M and Egea MB. 2021. Control of postharvest fungal diseases in fruits using external application of RNAi. Journal of Food Sciences 86 (8): 3341-3348. https://doi.org/10.1111/1750-3841.15816

De Rodríguez DJ, García RR, Castillo FDH, González CNA, Galindo AS, Quintanilla JAV and Zuccolotto LEM. 2011. In vitro antifungal activity of extracts of Mexican Chihuahuan Desert plants against postharvest fruit fungi. Industrial Crops and Products 34(1): 960-966. https://doi.org/10.1016/j.indcrop.2011.03.001

El-Hawary SS, El-Kammar HA, Farag MA, Saleh DO and El Dine RS. 2020. Metabolomic profiling of five Agave leaf taxa via UHPLC/PDA/ESI-MS in relation to their anti-inflammatory, immunomodulatory and ulceroprotective activities. Steroids 160: 108648. https://doi.org/10.1016/j.steroids.2020.108648

García-Mendoza AJ. 2007. Los Agaves de México. Ciencias, Universidad Autónoma de México 87: 14-23. https://www.redalyc.org/pdf/644/64408704.pdf

González-Álvarez M, Moreno-Limón S, Salcedo-Martínez S and Pérez-Rodríguez E. 2015. In vitro evaluation of antifungal activity of Agave (Agave scabra Salm Dyck) extracts against post-harvest mushrooms. Phyton Revista Internacional de Botánica Experimental 84(1):427-434. http://www.scielo.org.ar/pdf/phyton/v84n2/v84n2a23.pdf

González-Madariaga Y, Mena-Linares Y, Martín-Monteagudo D, Valido-Díaz A, Guerra-de-León JO and Nieto-Reyes L. 2020. In vivo anti-inflammatory effect of saponin-enriched fraction from Agave brittoniana Trel subspecie brachypus. Ars Pharmaceutica (Internet) 61(4): 231-237. https://scielo.isciii.es/pdf/ars/v61n4/2340-9894-ars-61-04-231.pdf

Iñiguez-Covarrubias G, Díaz-Teres R, Sanjuan-Dueñas R, Anzaldo-Hernández J and Rowell R. 2001. Utilization of by-products from the tequila industry, part 2: potential value of Agave tequilana Weber azul leaves. Bioresource Technology 77(2): 101-108. https://doi.org/10.1016/S0960-8524(00)00167-X

Ito S, Ihara T, Tamura H, Tanaka S, Ikeda T, Kajihara H, Dissanayake C, Abdel-Motaal FF and El-Sayed MA. 2007. ?- tomatina, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Letters 58(17), 3217-3222. https://doi.org/10.1016/j.febslet.2007.06.010

Jain A, Sarsaiya S, Wu Q, Lu Y and Shi J. 2019. A review of plants leaf fungal diseases and it environmental speciation. Bioengineered 10(1): 409-424. https://doi.org/10.1080/21655979.2019.1649520

Jin YS. 2019. Recent advances in natural antifungal flavonoids and their derivatives. Bioorganic and Medicinal Chemistry Letters 29(19): 126589. https://doi.org/10.1016/j.bmcl.2019.07.048

Juárez B, Sosa M and López M. 2010. Hongos fitopatógenos de alta importancia económica: descripción y métodos de control. Temas Selectos de Ingeniería de Alimentos 4: 14-23. https://www.udlap.mx/WP/tsia/files/No4-Vol-2/TSIA-4(2)-Juarez-Becerra-et-al-2010.pdf

Lagrouh F, Dakka N and Bakri Y. 2017. The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. Journal of Mycologie Médicale 27(3): 303-311. https://doi.org/10.1016/j.mycmed.2017.04.008

López-Salazar H, Camacho-Díaz BH, Ávila-Reyes SV, Pérez-García MD, González-Cortázar M, Arenas Ocampo ML and Jiménez-Aparicio AR. 2019. Identification and quantification of ?-sitosterol ?-D-glucoside of an ethanolic extract obtained by microwave-assisted extraction from Agave angustifolia Haw. Molecules (Basel, Switzerland) 24(21): 3926. https://doi.org/10.3390/molecules24213926

Lozano-Muñiz S, García S, Heredia N and Castro-Franco R. 2011. Species of Agave induces morphological changes in Aspergillus parasiticus Speare and Aspergillus flavus Link ex Fries. Journal of Food, Agriculture and Environment 9(2): 767-770. https://www.researchgate.net/publication/215484700

Maharshi A and Thaker V. 2014. Antifungal activity of Agave species from Gujarat, India. 423-430 Pp. In: In: Kharwar R, Upadhyay R, Dubey N, Raghuwanshi R (eds). Microbial Diversity and Biotechnology in Food Security. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1801-2_37

Mui Yun Wong, Hamid S, Iskandar Shah NA and Ab Razak NH. 2020. Botanical extracts as biofungicides against fungal pathogens of rice. Pertanika Journal of Tropical Agricultural Science 43(4): 457-466. https://doi.org/10.47836/pjtas.43.4.03

Nachilima C, Chigeza G, Chibanda M, Mushoriwa H, Diers BD, Murithi HM and Hartman GL. 2020. Evaluation of foliar diseases for soybean entries in the Pan-African trials in Malawi and Zambia. Plant Diseases 104(8): 2068-2073. https://doi.org/10.1094/PDIS-12-19-2617-SR

Ortiz-Martínez EL, Robles-Yerena L, Leyva-Mir GS, Camacho-Tapia M and Juárez-Rodríguez L. 2022. Fusarium sp., causal agent of vascular wilt in citrus and its sensitivity to fungicides, Mexican Journal of Phytopathology 4(1):1-17. https://doi.org/10.18781/R.MEX.FIT.2106-3

Palma-Guerrero J, Chancellor T, Spong J, Canning G, Hammond J, McMilla VE and Hammond-Kosack KE. 2021. Take-all diseases: New insights into an important wheat root pathogen. Trends in Plant Science 26 (8): 836-848. https://doi.org/10.1016/j.tplants.2021.02.009

Pavarini DP, Pavarini SP, Niehues M and Lopes N. 2012. Exogenous influences on plant secondary metabolites levels. Animal Feed Science and Technology 176 (1-4): 5-16. https://doi.org/10.1016/j.anifeedsci.2012.07.002

Pereira GM, Ribeiro MG, da Silva BP and Parente JP. 2017. Structural characterization of a new steroidal saponin from Agave angustifolia var. Marginata and preliminary investigation of its in vivo antiulcerogenic activity and in vitro membrane permeability property. Bioorganic and Medicinal Chemistry Letters 27 (18): 4345-4349. https://doi.org/10.1016/j.bmcl.2017.08.026

Salazar-Pineda DT, Castro-Alarcón N, Moreno-Godínez ME, Nicasio-Torres MP, Pérez-Hernández J and Álvarez-Fitz P. 2017. Antibacterial and anti-inflammatory activity of extracts and fractions from Agave cupreata. International Journal of Pharmacology 13: 1063-1070. https://doi.org/10.3923/ijp.2017.1063.1070

Siddhapura S, Maharshi A and Thaker V. 2011. Varietal difference in antifungal activity of some species of Agave. Archives of Phytopathology and Plant protection 44(2): 135-141. https://doi.org/10.1080/03235400902952087

Soto-Castro D, Santiago-García PA, Vásquez-López A, Sánchez-Heraz F, Vargas-Mendoza Y and Gaítan-Hernández R. 2021. Effect of ethanolic extracts from Agave potatorum Zucc leaves in the mycelial growth of Pleurotus spp. Emirates Journal of Food and Agriculture (EJFA) 33(3):228-236. https://doi.org/10.9755/ejfa.2021.v33.i3.2664

Tapia-Quirós P, Martínez-Téllez MA, Ávila-Quezada GD and Vargas-Arispuro I. 2020. Inhibición de endo-1,3-?-glucanasa fúngica por compuestos fenólicos aislados de Turnera diffusa: una alternativa para antifúngicos convencionales. Revista Mexicana de Fitopatología 38(1):160-169. https://doi.org/10.18781/r.mex.fit.1911-3

United Nations. 2019. How certain are the United Nations global population projections? Population Facts. https://population.un.org/wpp/Publications/

Urbina CJF, Casas A, Martínez-Díaz Y, Santos-Zea L and Gutiérrez-Uribe JA. 2018. Domestication and saponins contents in a gradient of management intensity of Agaves: Agave cupreata, A. inaquides and A. hookeri in central Mexico. Genetic Resources and Crop Evolution; An International Journal 65(4):1133. https://doi.org/10.1007/s10722-017-0601-6

Yan YF, Yang CJ, Shang XF, Zhao ZM, Liu YQ, Zhou R, Liu H, Wu TL, Zhao WB, Wang YL, Hu GF, Qin F, He YH, Li HX and Du SS. 2020. Bioassay guided isolation of two antifungal compounds from Magnolia officinalis and the mechanism of action of honokiol. Pesticide Biochemistry and Physiology 170. https://doi.org/10.1016/j.pestbp.2020.104705

Zaynab M, Sharif Y, Abbas S, Afzal MZ, Qasim M, Khalofah A, Ansari MJ, Khan KA, Tao L and Li S. 2021. Saponin toxicity as key player in plant defense against pathogens. Toxicon 193: 21-27. https://doi.org/10.1016/j.toxicon.2021.01.009

Zhao S, Guo Y, Wang Q and An B. 2021. Antifungal effects of lycorina on Botrytis cinerea and posible mechanisms. Biotechnology Letters 43(7): 1503-1512. https://doi.org/10.1007/s10529-021-03128-8

Zubrod JP, Bundschunh M, Arts G, Knäbel A, Payraudeaus S, Rasmussen JJ, Rohr J, Scharmüller A, Smalling K, Sehle S, Schulz R and Schäfer RB. 2019. Fungicides: An overlooked pesticide class?. Environmental Science and Technology 53(7):3347-3365. https://doi.org/10.1021/acs.est.8b04392




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2202-6

Refbacks

  • There are currently no refbacks.