Incidence and causal agents of root diseases and its antagonists in apple orchards of Chihuahua, México

María Fernanda Ruiz-Cisneros, Claudio Rios-Velasco, David Ignacio Berlanga-Reyes, José de Jesús Ornelas-Paz, Carlos Horacio Acosta-Muñiz, Alejandro Romo-Chacón, Paul Baruk Zamudio-Flores, Daniel Alfonso Pérez-Corral, Miguel Ángel Salas-Marina, Eugenio Ibarra-Rendón, Sylvia Patricia Fernández-Pavía

Abstract


The incidence of root diseases was estimated in apple orchards from Chihuahua, Mexico. Three hundred isolates (fungi and Oomycetes) were identified in samples of root tissue and soil of trees with infectious damage symptoms and disease symptom-free trees. At the same time, putatively antagonistic agents were isolated and subsequently identified. The pathogenicity of fifteen selected isolates (eight fungi and seven Oomycetes), was tested in twelve apple rootstocks under greenhouse conditions. In addition, the in vitro antagonistic activity of Trichoderma and Bacillus species was evaluated against seven of the selected Oomycetes. The incidence of infection damage of roots in 20 tested orchards was 17% (1-40%). Fusarium was the most widely distributed fungi (67.8%). The distribution of the other organisms was variable. Four species of Trichoderma were identified, with T. gamsii being the most widely distributed (72.5%). Bacillus spp. substantially reduced the radial growth (>90%, p=0.05) of Phytophthora cactorum. Eleven rootstocks were susceptible to Pythium ultimum y Phytophthora cactorum C3. The G.935, Standard and M.25 rootstocks were the most resistant with 0% incidence. The antagonistic species of both genera inhibited the in vitro growth of P. cactorum (86.4-93.8%, p= 0.05), respect to Pythium species, and therefore, they might be used as biological control agents.

Keywords


Bacillus spp.; Fusarium spp.; Phytophthora cactorum; Trichoderma spp.; ITS Región; molecular identification

Full Text:

PDF (Español)

References


Altschul SF, Gish W, Miller W, Myers EW y Lipman DJ. 1990. Basic local alignment search tool. Molecular Biology 15: 403–410. https://dx.doi.org/10.1016/S0022-2836(05)80360-2

Barnett, H.L., y Hunter, B.B. 1998. Illustrated genera of imperfect fungi (3rd ed.). The American Phytopathological Society. U.S Department of Agriculture, Agricultural Research Service, Washington State University, Pullman. APS Press. USA. St. Paul, Minnesota USA. 218p.

Bell D, Well H y Markham C. 1982. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology 72: 379–382. https://www.apsnet.org/publications/phytopathology/backissues/Documents/1982Articles/Phyto72n04_379.PDF

Carreri R, Raimo F, Pentangelo A y Lahoz E. 2013. Fusarium proliferatum and Fusarium tricinctum as causal agents of pink rot of onion bulbs and the effect of soil solarization combined with compost amendment in controlling their infections in field. Crop Protection 43: 31–37. http://doi.org/10.1016/j.cropro.2012.09.013

Cooney JM, Lauren DR y di-Menna ME. 2001. Impact of competitive fungi on trichothecene production by Fusarium graminearum. Journal of Agricultural and Food Chemistry 49: 522–526. http://dx.doi.org/10.1021/jf0006372

Dev-Sharma SC, Shovon MS, Sarowar-Jahan MG, Asaduzzaman AK, Rahman Md.A, Biswas KK y Roy N. 2013. Antibacterial and cytotoxic activity of Bacillus methylotrophicus SCS 2012 isolated from soil. Journal of Microbiology, Biotechnology and Food Sciences 2(4): 2293–2307. http://www.jmbfs.org/wp-content/uploads/2013/02/jmbfs_0247_devsharma.pdf

Dugan FM. 2006. The Identification of fungi. An illustrated introduction with keys, glossary, and guide to literature. The American Phytopathological Society. U.S Department of Agriculture, Agricultural Research Service, Washington State University, Pullman. APS Press. USA. St. Paul, Minnesota USA. 176p.

Ezziyyani M, Sánchez C, Requena ME, Rubio L y Candela ME. 2004. Biocontrol por Streptomyces rochei -Ziyani-, de la podredumbre del pimiento (Capsicum annuum L.) causada por Phytophthora capsici. Anales de Biología 26: 69–78. https://www.um.es/analesdebiologia/numeros/26/PDF/08-BIOCONTROL.pdf

Gajera HP y Vakharia DN. 2010. Molecular and biochemical characterization of Trichoderma isolates inhibiting a phytopathogenic fungi Aspergillus niger Van Tieghem. Physiological and Molecular Plant Pathology 74: 274–282. http://dx.doi.org/10.1016/j.pmpp.2010.04.005

Guillén-Cruz R, Hernández-Castillo FD, Gallegos-Morales G, Rodríguez-Herrera R, Aguilar-González CN, Padrón-Corral E y Reyes-Valdés MH. 2006. Bacillus spp. como biocontrol en un suelo infestado con Fusarium spp., Rhizoctonia solani Kühn y Phytophthora capsici Leonian y su efecto en el desarrollo y rendimiento del cultivo de Chile (Capsicum annuum L.). Revista Mexicana de Fitopatología 24(2): 105–114. http://www.redalyc.org/pdf/612/61224204.pdf

Hantula J, Lilja A, Nuorteva H, Parikka P y Werres S. 2000. Pathogenicity, morphology and genetic variation of Phytophthora cactorum from strawberry, apple, rhododendron, and silver birch. Mycological Research 104(9): 1062-1068. https://doi.org/10.1017/S0953756200002999

Hsuan HM, Salleh B y Zakaria L. 2011. Molecular identification of Fusarium species in Gibberella fujikuroi species complex from rice, sugarcane and maize from Peninsular Malaysia. International Journal of Molecular Sciencies 12: 6722–6732. http://dx.doi.org/10.3390/ijms12106722

Intana W, Yenjit P, Suwanno T, Sattasakulchai S, Suwanno M y Chamswarng C. 2008. Efficacy of antifungal metabolites Bacillus spp. for controlling tomato damping-off caused by Pythium aphanidermatum. Walailak Journal Science and Technology 5(1): 29–38. http://wjst.wu.ac.th/index.php/wjst/article/view/108/92

Jeyaseelan EC, Tharmila S y Niranjan K. 2012. Antagonistic activity of Trichoderma spp. and Bacillus spp. against Pythium aphanidermatum isolated from tomato Damping Off. Archives of Applied Science Research 4(4): 1623–1627. http://www.scholarsresearchlibrary.com/articles/antagonistic-activity-of-trichoderma-spp-and-bacillus-spp-against-pythium-aphanidermatum-isolated-from-tomato-damping-of.pdf

Ju R, Zhao Y, Li J, Jiang H, Liu P, Yang T, Bao Z, Zhou B, Zhou X y Liu X. 2014. Identification and evaluation of a potential biocontrol agent Bacillus subtilis against Fusarium sp. in apple seedlings. Annals of Microbiology 64: 377–383. http://dx.doi.org/10.1007/s13213-013-0672-3

Kamal S, Prasad R y Varma A. 2010. Soil microbial diversity in relation to heavy metals Soil Heavy Metals. Springer Berlin Heidelberg. 19:31–63. https://doi.org/10.1007/978-3-642-02436-8_3

Lamichhane JR y Venturi V. 2015. Synergisms between microbial pathogens in plant disease complexes: a growing trend. Frontiers in Plant Science 6(385): 1-12. https://doi.org/10.3389/fpls.2015.00385

Latorre BA, Rioja ME y Wilcox WF. 2001. Phytophthora species associated with crown and root rot of apple in Chile. Plant Disease 85: 603–606. http://dx.doi.org/10.1094/PDIS.2001.85.6.603

Leslie JF, Anderson LL, Bowden RL y Lee YW. 2007. Inter- and intra-specific genetic variation in Fusarium. International Journal of Food Microbiology 119: 25–32. http://doi.org/10.1016/j.ijfoodmicro.2007.07.059

Manici LM, Ciavatta C, Kelederer M y Erschbaumer G. 2003. Replant problems in South Tyrol: role of fungal pathogens and microbial population in conventional and organic apple orchards. Plant and Soil 256: 315–324. http://doi.org/10.1023/A:1026103001592

Manici LM, Kelderer M, Franke-Whittle IH, Rühmer T, Baab G, Nicoletti F y Neaf A. 2013. Relationship between root-endophytic microbial communities and replant diseases in specialized apple growing areas in Europe. Applied Soil Ecology 72: 207–214. http://doi.org/10.1016/j.apsoil.2013.07.011

Pérez-Corral DA, García-González NY, Gallegos-Morales G, Ruiz-Cisneros MF, Berlanga-Reyes DI y Rios-Velasco C. 2015. Aislamiento de actinomicetos asociados a rizosfera de árboles de manzano antagónicos a Fusarium equiseti. Revista Mexicana de Ciencias Agrícolas 6(7): 1629–1638. http://www.scielo.org.mx/pdf/remexca/v6n7/v6n7a16.pdf

Raeder U y Broda P. 1985. Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology 1: 17–20. http://dx.doi.org/10.1111/j.1472-765X.1985.tb01479.x

Ramírez-Legarreta MR, Jacobo-Cuéllar JL, Marioni-Ãvila MR y Parra-Quezada RA. 2004. Eficiencia del uso de plaguicidas en huertos de manzano [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] en Chihuahua, México. Revista Mexicana de Fitopatología 22: 403–413. http://www.redalyc.org/pdf/612/61222314.pdf

Ramírez-Legarreta MR, Ruiz-Corral JA, Medina-García G, Jacobo-Cuéllar JL, Parra-Quezada RA, Ãvila-Marioni MR y Armando-Ãlvarez JP. 2011. Perspectivas del sistema de producción de manzano en Chihuahua, ante el cambio climático. Revista Mexicana de Ciencias Agrícolas 2: 265-279. http://www.scielo.org.mx/pdf/remexca/v2nspe2/v2spe2a8.pdf

Rios-Velasco C, Caro-Cisneros JM, Berlanga-Reyes DI, Ruiz-Cisneros MF, Ornelas-Paz JJ, Salas-Marina MA, Villalobos-Pérez E y Guerrero-Prieto VM. 2016. Identification and antagonistic activity in vitro of Bacillus spp. and Trichoderma spp. isolates against common phytopathogenic fungi. Revista Mexicana de Fitopatología 34(1): 84–99. http://dx.doi.org/10.18781/R.MEX.FIT.1507-1

Roiger DJ, y Jeffers SN. 1991. Evaluation of Trichoderma spp, for biological control of Phytophthora crown and root rot of apple seedlings. Phytopathology 81: 910–917. http://doi.org/10.1094/Phyto-81-910

Rumberger, A., Merwin, I.A., y Thies, J.E. 2007. Microbial community development in the rhizosphere of apple trees at a replant disease site. Soil Biology and Biochemistry. 39: 1645-1654. https://doi.org/10.1016/j.soilbio.2007.01.023

Samaniego-Gaxiola JA. 2007. Research perspectives on Phymatotrichopsis omnivora and the disease it causes. Agricultura Técnica en México 33: 309–318. http://www.scielo.org.mx/pdf/agritm/v33n3/v33n3a10.pdf

SAS Institute. 2002. SAS User’s Guide. Version 9.0. SAS Institute, Cary, NC.

Scherm B, Balmas V, Spanu F, Pani G, Delogu G, Pasquali M y Migheli Q. 2013. Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Molecular Plant Pathology 14(4): 323–341. https://doi.org/10.1111/mpp.12011

Schoenborn L, Yates PS, Grinton BE, Hugenholtz P, y Janssen PH. 2004. Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Applied and Environmental Microbiology 70(7): 4363-4366. https://doi.org/10.1128/AEM.70.7.4363-4366.2004

Serdani M, Kang JC, Andersen B y Crous PW. 2002. Characterisation of Alternaria species-groups associated with core rot of apples in South Africa. Mycological Research 106: 561–569. https://doi.org/10.1017/S0953756202005993

Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J y Handelsman J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Applied and Enviromental Microbiology 60: 2023–2030. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC201597/pdf/aem00023-0329.pdf

Souto GI, Correa OS, Montecchia MS, Kerber NL, Pucheu NL, Bachur M y García AF. 2004. Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. Journal of Applied Microbiology 97: 1247–1256. http://dx.doi.org/10.1111/j.1365-2672.2004.02408.x

Tewoldemedhin YT, Mazzola M, Botha WJ, Spies CFJ y McLeod A. 2011a. Characterization of fungi (Fusarium and Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa. European Journal of Plant Pathology 130: 215–229. http://dx.doi.org/10.1007/s10658-011-9747-9

Tewoldemedhin YT, Mazzola M, Labuschagne I y McLeod A. 2011b. A multi-phasic approach reveals that apple replant disease is caused by multiple biological agents, with some agents acting synergistically. Soil Biology and Biochemistry 43: 1917–1927. http://doi.org/10.1016/j.soilbio.2011.05.014

Uthkede RS y Smith EM. 1991. Phytophthora and Pythium species associated with root rot of young apple trees and their control. Soil Biology and Biochemistry 23: 1059–1063. https://doi.org/10.1016/0038-0717(91)90044-K

Watanabe T. 2010. Pictorial atlas of soil and seed fungi: Morphologies of cultured fungi and key to species (3rd ed.): CRC Press.

Wheatley RE. 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81: 357–364. http://dx.doi.org/10.1023/A:1020592802234

White TJ, Bruns T, Lee S y Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Press, A. (Ed.), PCR protocols: A guide to methods and applications. pp. 315–322. http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1

Wilcox WF. 1993. Incidence and severity of crown and root rots on four apple rootstocks following exposure to Phytophthora species and waterlogging. Journal of American Society of Horticultural Science 118(1): 63–67. http://journal.ashspublications.org/content/118/1/63.full.pdf+html

Yao S, Merwin I A, Abawi GS y Thies JE. 2006. Soil fumigation and compost amendment alter oil microbial community composition but do not improve tree growth or yield in an apple replant site. Soil Biology and Biochemistry 38: 587–599. http://doi.org/10.1016/j.soilbio.2005.06.026




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1704-3

Refbacks

  • There are currently no refbacks.